Usando os algarismos 1 2 3 4 e 6 quantos números ímpares de 3 algarismos podemos formar

Com os algarismos de 1 2 3 4 5 e 6 : A) Quantos números de 4 algarismos podemos formar ? B) Quantos números de 4 algarismos distintos podemos formar tal que o último algarismo seja sempre 6? C) Quantos números pares de 4 algarismos distintos podemos formar ? D) Quantos números ímpares de 4 algarismos distintos podemos formar ?

Usando os algarismos 1 2 3 4 e 6 quantos números ímpares de 3 algarismos podemos formar

RD Resoluções

Usando os algarismos 1 2 3 4 e 6 quantos números ímpares de 3 algarismos podemos formar

Há mais de um mês

---

Nesse problema de contagem, o princípio multiplicativo será usado para resolver a questão.

---

Os algarismos de 1 a 6 vão formar um número com 4 algarismos.

  1. 4 algarismos podem formar:
  2. Com repetição de algarismos: 6x6x6x6 = 1296 números

    Sem repetição de algarismos: 6x5x4x3 = 360 números

    1. Número com 4 algarismos distintos terminados com 6:

    No primeiro algarismo, temos 5 opções. No segundo, 4 opções. No terceiro, 3 opções. No quarto, 1 única opção: o algarismo 6.

    Logo: 5x4x3x1 = 60 números

    1. Números pares de 4 algarismos distintos:

    Supondo que termine com o algarismo 2, temos:

    5x4x3x1 = 60 números.

    Se terminar com o algarismo 4, teremos 60 possibilidades. Para o algarismo 6 também.

    Logo, podemos formar 60+60+60 = 180 números pares.

    1. Números ímpares de 4 algarismos distintos:

    No item A), calculamos todas as possibilidades de formar números de 4 algarismos sem repetição.

    Logo, basta subtrairmos a quantidade de números pares do total.

    360 - 180 = 180 números.

    ---

    A)

    Com repetição, \(\boxed{1296}\)

    Sem repetição, \(\boxed{360}\)

    B)


    \[\boxed{60}\]

    C)


    \[\boxed{180}\]

    D)


    \[\boxed{180}\]

---

Nesse problema de contagem, o princípio multiplicativo será usado para resolver a questão.

---

Os algarismos de 1 a 6 vão formar um número com 4 algarismos.

  1. 4 algarismos podem formar:
  2. Com repetição de algarismos: 6x6x6x6 = 1296 números

    Sem repetição de algarismos: 6x5x4x3 = 360 números

    1. Número com 4 algarismos distintos terminados com 6:

    No primeiro algarismo, temos 5 opções. No segundo, 4 opções. No terceiro, 3 opções. No quarto, 1 única opção: o algarismo 6.

    Logo: 5x4x3x1 = 60 números

    1. Números pares de 4 algarismos distintos:

    Supondo que termine com o algarismo 2, temos:

    5x4x3x1 = 60 números.

    Se terminar com o algarismo 4, teremos 60 possibilidades. Para o algarismo 6 também.

    Logo, podemos formar 60+60+60 = 180 números pares.

    1. Números ímpares de 4 algarismos distintos:

    No item A), calculamos todas as possibilidades de formar números de 4 algarismos sem repetição.

    Logo, basta subtrairmos a quantidade de números pares do total.

    360 - 180 = 180 números.

    ---

    A)

    Com repetição, \(\boxed{1296}\)

    Sem repetição, \(\boxed{360}\)

    B)


    \[\boxed{60}\]

    C)


    \[\boxed{180}\]

    D)


    \[\boxed{180}\]

Usando os algarismos 1 2 3 4 e 6 quantos números ímpares de 3 algarismos podemos formar

Joao Ledo Fonseca

Há mais de um mês

Temos 6 algarismos (1,2,3,4,5 e 6) para preencher 4 posições. Sendo sem repetição de algarismos, por cada uma das quatro posições temos menos um algarismo disponivel (o usado na posição anterior)

A) Podemos formar

6x6x6x6=1296

B) Se o ultimo algarismo é sempre 6, e com todos os algarismos diferentes:

5x4x3x1= 60

C) Os pares são o 2, 4 e 6 (total de 3 algarismos). Usando um dos pares para a ultima posição, vem

5x4x3x3=180

D) Os impares são o 1,3 e 5 (três algarismos). Usando um deles na ultima posição, vem

5x4x3x3=180

Usando os algarismos 1 2 3 4 e 6 quantos números ímpares de 3 algarismos podemos formar

Maria Milena Santo

Há mais de um mês

Essa pergunta já foi respondida por um dos nossos especialistas

Exercicios de Análise Combinatória

Na página Análise Combinatória, você encontra a teoria necessária para resolver os exercícios aqui propostos, sendo que alguns deles possuem resposta ou alguma ajuda. Nem sempre os exercícios aparecem em ordem de dificuldade crescente.

  1. Se \(C(n,2)=28\), qual é o valor de \(n\)?
    Resposta: \(n=8\).
  2. Existe um número \(n\) natural tal que \(C(n,3)=C(n,2)\)?
  3. Usando o desenvolvimento binomial de \((1+1)^n\), demonstrar que:

    \(C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=2^n\)

  4. Usar o PIF (Princípio de Indução Matemática), para demonstrar que:

    \((p+1)C(n,p+1)=(n-p)C(n,p)\)

  5. Usar o PIF (Princípio de Indução Matemática), para mostrar que:

    \(n \cdot C(n-1,p)=(n-p) \cdot C(n,p)\)

  6. Se \(A(n,2)=42\), qual é o valor de \(n\)?
    Resposta: \(n=7\).
  7. Justificar a afirmação: Se \(n\) é um número primo e \(p<n\), então \(n\) é um divisor de \(C(n,p)\).
  8. Usar o PIF (Princípio de Indução Matemática), para mostrar que:

    \(2{\cdot}4{\cdot}6{\cdot}8{\cdot}10·...2n=(2n)n!\)

  9. Usar o PIF (Princípio de Indução Matemática), para mostrar que:

    \(1{\cdot}3{\cdot}5{\cdot}7{\cdot}9\cdots{\cdot}(2n-1)=\dfrac{(2n)!}{2^n n!}\)

  10. Usar o PIF (Princípio de Indução Matemática), para mostrar que:

    \(2{\cdot}6{\cdot}10{\cdot}14{\cdot}18{\cdot}22\cdots{\cdot}(4n-2)=\dfrac{(2n)!}{n!}\)

  11. Usar o PIF (Princípio de Indução Matemática), para demonstrar que para \(k\leq p\) vale a igualdade

    \(A(n,k)=\dfrac{A(n,p)}{A(n-k,p-k)}\)

  12. Usar o PIF (Princípio de Indução Matemática), para demonstrar que para \(k \leq n\), vale a igualdade: \(Pr(n;k+(n-k))=C(n,k)\).
  13. Usar o PIF (Princípio de Indução Matemática), para mostrar que:

    \(1(1!)+2(2!)+3(3!)+...+n(n!)=(n+1)!-1\)

  14. Demonstrar que para todo número \(k\) natural: \(\dfrac{1}{k!} - \dfrac{1}{(k+1)!} =\dfrac{k}{(k+1)!}\).
  15. Demonstrar que:

    \(\dfrac{1/2!+2/3!+3/4!+...+n}{(n+1)!}=\dfrac{1}{(n+1)!}\)


    Auxílio: Como esta é uma série telescópica, em que cada termo pode ser escrito como a diferença de dois outros que se anulam em sequência, basta usar o fato que para todo \(k\leq n\), vale a relação: \(\dfrac{k}{(k+1)!}=\dfrac{1}{k!} - \dfrac{1}{(k+1)!}\).
  16. Demonstrar que:

    \(A(n,p) = p[A(n-1,p-1)+A(n-2,p-1)+...+A(p-1,p-1)]\)