Your instructor may have you complete one or more of the additional activities listed below. for one of your two research questions, develop a well-conceived hypothesis a statement, not a question, that explains what you suspect the answer to your

What is a research question?
A research question is the question around which you center your research. It should be:

  • clear: it provides enough specifics that one’s audience can easily understand its purpose without needing additional explanation.
  • focused: it is narrow enough that it can be answered thoroughly in the space the writing task allows.
  • concise: it is expressed in the fewest possible words.
  • complex: it is not answerable with a simple “yes” or “no,” but rather requires synthesis and analysis of ideas and sources prior to composition of an answer.
  • arguable: its potential answers are open to debate rather than accepted facts.

You should ask a question about an issue that you are genuinely curious and/or passionate about.

The question you ask should be developed for the discipline you are studying. A question appropriate for Biology, for instance, is different from an appropriate one in Political Science or Sociology. If you are developing your question for a course other than first-year composition, you may want to discuss your ideas for a research question with your professor.

Why is a research question essential to the research process?
Research questions help writers focus their research by providing a path through the research and writing process. The specificity of a well-developed research question helps writers avoid the “all-about” paper and work toward supporting a specific, arguable thesis.

Steps to developing a research question:

  1. Choose an interesting general topic. Most professional researchers focus on topics they are genuinely interested in studying. Writers should choose a broad topic about which they genuinely would like to know more. An example of a general topic might be “Slavery in the American South” or “Films of the 1930s.”
  2. Do some preliminary research on your general topic. Do a few quick searches in current periodicals and journals on your topic to see what’s already been done and to help you narrow your focus. What issues are scholars and researchers discussing, when it comes to your topic? What questions occur to you as you read these articles?
  3. Consider your audience. For most college papers, your audience will be academic, but always keep your audience in mind when narrowing your topic and developing your question. Would that particular audience be interested in the question you are developing?
  4. Start asking questions. Taking into consideration all of the above, start asking yourself open-ended “how” and “why” questions about your general topic. For example, “Why were slave narratives effective tools in working toward the abolishment of slavery?” or “How did the films of the 1930s reflect or respond to the conditions of the Great Depression?”
  5. Evaluate your question. After you’ve put a question or even a couple of questions down on paper, evaluate these questions to determine whether they would be effective research questions or whether they need more revising and refining.
    • Is your research question clear? With so much research available on any given topic, research questions must be as clear as possible in order to be effective in helping the writer direct his or her research.
    • Is your research question focused? Research questions must be specific enough to be well covered in the space available.
    • Is your research question complex? Research questions should not be answerable with a simple “yes” or “no” or by easily-found facts.  They should, instead, require both research and analysis on the part of the writer. They often begin with “How” or “Why.”
  6. Begin your research. After you’ve come up with a question, think about the possible paths your research could take. What sources should you consult as you seek answers to your question? What research process will ensure that you find a variety of perspectives and responses to your question?

Sample Research Questions

Unclear: How should social networking sites address the harm they cause?
Clear: What action should social networking sites like MySpace and Facebook take to protect users’ personal information and privacy?The unclear version of this question doesn’t specify which social networking sites or suggest what kind of harm the sites might be causing. It also assumes that this “harm” is proven and/or accepted. The clearer version specifies sites (MySpace and Facebook), the type of potential harm (privacy issues), and who may be experiencing that harm (users). A strong research question should never leave room for ambiguity or interpretation.


Unfocused:
What is the effect on the environment from global warming?


Focused: What is the most significant effect of glacial melting on the lives of penguins in Antarctica?

The unfocused research question is so broad that it couldn’t be adequately answered in a book-length piece, let alone a standard college-level paper. The focused version narrows down to a specific effect of global warming (glacial melting), a specific place (Antarctica), and a specific animal that is affected (penguins). It also requires the writer to take a stance on which effect has the greatest impact on the affected animal. When in doubt, make a research question as narrow and focused as possible.


Too simple: How are doctors addressing diabetes in the U.S.?
Appropriately Complex:  What main environmental, behavioral, and genetic factors predict whether Americans will develop diabetes, and how can these commonalities be used to aid the medical community in prevention of the disease?

The simple version of this question can be looked up online and answered in a few factual sentences; it leaves no room for analysis. The more complex version is written in two parts; it is thought provoking and requires both significant investigation and evaluation from the writer. As a general rule of thumb, if a quick Google search can answer a research question, it’s likely not very effective.

Last updated 8/8/2018

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study.

For example, a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states, "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

In the scientific method, whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  1. Forming a question
  2. Performing background research
  3. Creating a hypothesis
  4. Designing an experiment
  5. Collecting data
  6. Analyzing the results
  7. Drawing conclusions
  8. Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you expect to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment do not support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

When trying to come up with a good hypothesis for your own research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the journal articles you read. Many authors will suggest questions that still need to be explored.

In order to form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific methodfalsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that if something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable "test anxiety" as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the dependent variable if you make changes to the independent variable.

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety prior to an English exam will get higher scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive research such as case studies, naturalistic observations, and surveys are often used when it would be impossible or difficult to conduct an experiment. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental methods are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually cause another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.