Why is the normal range for the mass of dna in a male cat cell lower than for a female cat?

1. Benveniste RE, Todaro GJ. Segregation of RD-114 AND FeL-V-related sequences in crosses between domestic cat and leopard cat. Nature. 1975;257:506. [PMC free article] [PubMed] [Google Scholar]

2. Centerwall WR, Benirschke K. Animal model for the XXY Klinefelter's syndrome in man: tortoiseshell and calico male cats. Am J Vet Res. 1975;36:1275. [PubMed] [Google Scholar]

3. Cho KW, Youn HY, Watari T. A proposed nomenclature of the domestic cat karyotype. Cytogenet Cell Genet. 1997;79:71. [PubMed] [Google Scholar]

4. Chu EHY, Thuline HC, Norby DE. Triploid-diploid chimerism in a male tortoiseshell cat. Cytogenetics. 1964;24:1. [PubMed] [Google Scholar]

5. Cooper MP, Fretwell N, Bailey SJ. White spotting in the domestic cat (Felis catus) maps near KIT on feline chromosome B1. Anim Genet. 2006;37:163. [PMC free article] [PubMed] [Google Scholar]

6. Cox DR, Burmeister M, Price ER. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science. 1990;250:245. [PubMed] [Google Scholar]

7. Doncaster L. On the inheritance of tortoiseshell and related colours in cats. Proc Camb Philol Soc. 1904;13:35. [Google Scholar]

8. Fyfe JC, Menotti-Raymond M, David VA. An approximately 140-kb deletion associated with feline spinal muscular atrophy implies an essential LIX1 function for motor neuron survival. Genome Res. 2006;16:1084. [PMC free article] [PubMed] [Google Scholar]

9. Grahn RA, Lemesch BM, Millon LV. Localizing the X-linked orange colour phenotype using feline resource families. Anim Genet. 2005;36:67. [PubMed] [Google Scholar]

10. Gregson NM, Ishmael J. Diploid triploid chimerism in three tortoiseshell cats. Res Vet Sci. 1971;12:275. [PubMed] [Google Scholar]

11. Haskins M. Gene therapy for lysosomal storage diseases (LSDs) in large animal models. Ilar J. 2009;50:112. [PMC free article] [PubMed] [Google Scholar]

12. He Q, Lowrie C, Shelton GD. Inherited motor neuron disease in domestic cats: a model of spinal muscular atrophy. Pediatr Res. 2005;57:324. [PubMed] [Google Scholar]

Hill's Press Release, Topeka, Kansas, July 20, 2008.

13. Imes DL, Geary LA, Grahn RA. Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation. Anim Genet. 2006;37:175. [PMC free article] [PubMed] [Google Scholar]

14. Ishihara T. Cytological studies on tortoiseshell male cats. Cytologia. 1956;21:391. [Google Scholar]

15. Johnson G. Gogees Cattery; Greenwell Springs, LA: 1991. The Bengal cat. [Google Scholar]

16. Johnson W, O’Brien SJ. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. J Mol Evol. 1997;44:s98. [PubMed] [Google Scholar]

17. Johnson WE, Eizirik E, Pecon-Slattery J. The late Miocene radiation of modern Felidae: a genetic assessment. Science. 2006;311:73. [PubMed] [Google Scholar]

18. Ke X, Kennedy LJ, Short AD. Assessment of the functionality of genome-wide canine SNP arrays and implications for canine disease association studies. Anim Genet. 2010 in press. [PubMed] [Google Scholar]

19. Kosowska B, Januszewski A, Tokarska M. Cytogenetic and histologic studies of tortoiseshell cats. Med Weter. 2001;57:475. [Google Scholar]

20. Kuiper H, Hewicker-Trautwein M, Distl O. [Cytogenetic and histologic examination of four tortoiseshell cats] Dtsch Tierarztl Wochenschr. 2003;110:457. [PubMed] [Google Scholar]

21. Louwerens M, London CA, Pedersen NC. Feline lymphoma in the post-feline leukemia virus era. J Vet Intern Med. 2005;19:329. [PubMed] [Google Scholar]

22. Lyons LA, Bailey SJ, Baysac KC. The Tabby cat locus maps to feline chromosome B1. Anim Genet. 2006;37:383. [PMC free article] [PubMed] [Google Scholar]

23. Lyons LA, Imes DL, Rah HC. Tyrosinase mutations associated with Siamese and Burmese patterns in the domestic cat (Felis catus) Anim Genet. 2005;36:119. [PubMed] [Google Scholar]

24. Menotti-Raymond M, David VA, Agarwala R. Radiation hybrid mapping of 304 novel microsatellites in the domestic cat genome. Cytogenet Genome Res. 2003;102:272. [PubMed] [Google Scholar]

25. Menotti-Raymond M, David VA, Chen ZQ. Second-generation integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus) J Hered. 2003;94:95. [PubMed] [Google Scholar]

26. Menotti-Raymond M, David VA, Lyons LA. A genetic linkage map of microsatellites in the domestic cat (Felis catus) Genomics. 1999;57:9. [PubMed] [Google Scholar]

27. Menotti-Raymond M, David VA, Schaffer AA. Mutation in CEP290 discovered for cat model of human retinal degeneration. J Hered. 2007;98:211. [PubMed] [Google Scholar]

28. Menotti-Raymond M, David VA, Schaffer AA. An autosomal genetic linkage map of the domestic cat, Felis silvestris catus. Genomics. 2008 [PMC free article] [PubMed] [Google Scholar]

29. Menotti-Raymond M, Deckman K, David V. Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol Vis Sci. 2010;51:2852. [PMC free article] [PubMed] [Google Scholar]

30. Murphy WJ, Davis B, David VA. A 1.5-Mb-resolution radiation hybrid map of the cat genome and comparative analysis with the canine and human genomes. Genomics. 2006 [PMC free article] [PubMed] [Google Scholar]

31. Murphy WJ, Menotti-Raymond M, Lyons LA. Development of a feline whole genome radiation hybrid panel and comparative mapping of human chromosome 12 and 22 loci. Genomics. 1999;57:1. [PubMed] [Google Scholar]

32. Murphy WJ, Sun S, Chen Z. A radiation hybrid map of the cat genome: implications for comparative mapping. Genome Res. 2000;10:691. [PMC free article] [PubMed] [Google Scholar]

33. Murphy WJ, Sun S, Chen ZQ. Extensive conservation of sex chromosome organization between cat and human revealed by parallel radiation hybrid mapping. Genome Res. 1999;9:1223. [PMC free article] [PubMed] [Google Scholar]

34. Nash WG, O’Brien SJ. Conserved regions of homologous G-banded chromosomes between orders in mammalian evolution: carnivores and primates. Proc Natl Acad Sci U S A. 1982;79:6631. [PMC free article] [PubMed] [Google Scholar]

35. O’Brien SJ, Cevario SJ, Martenson JS. Comparative gene mapping in the domestic cat (Felis catus) J Hered. 1997;88:408. [PubMed] [Google Scholar]

36. O’Brien SJ, Haskins ME, Winkler CA. Chromosomal mapping of beta-globin and albino loci in the domestic cat. A conserved mammalian chromosome group. J Hered. 1986;77:374. [PubMed] [Google Scholar]

37. O’Brien SJ, Nash WG. Genetic mapping in mammals: chromosome map of domestic cat. Science. 1982;216:257. [PubMed] [Google Scholar]

38. O’Brien SJ, Wienberg J, Lyon LA. Comparative genomics: lessons from cats. Trends Genet. 1997;13:393. [PubMed] [Google Scholar]

39. Pedersen NC, Allen CE, Lyons LA. Pathogenesis of feline enteric coronavirus infection. J Feline Med Surg. 2008;10:529. [PMC free article] [PubMed] [Google Scholar]

40. Pedersen NC, Barlough JE. Clinical overview of feline immunodeficiency virus. J Am Vet Med Assoc. 1991;199:1298. [PubMed] [Google Scholar]

41. Pontius JU, Mullikin JC, Smith DR. Initial sequence and comparative analysis of the cat genome. Genome Res. 2007;17:1675. [PMC free article] [PubMed] [Google Scholar]

42. Pyle RL, Patterson DF, Hare WC. XXY sex chromosome constitution in a Himalayan cat with tortoise-shell points. J Hered. 1971;62:220. [PubMed] [Google Scholar]

43. Rasheed S, Gardner MB. Isolation of feline leukemia virus from a leopard cat cell line and search for retrovirus in wild felidae. J Natl Cancer Inst. 1981;67:929. [PubMed] [Google Scholar]

44. Rettenberger G, Klett C, Zechner U. ZOO-FISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res. 1995;3:479. [PubMed] [Google Scholar]

45. Roca AL, Nash WG, Menninger JC. Insertional polymorphisms of endogenous feline leukemia viruses. J Virol. 2005;79:3979. [PMC free article] [PubMed] [Google Scholar]

46. Roca AL, Pecon-Slattery J, O’Brien SJ. Genomically intact endogenous feline leukemia viruses of recent origin. J Virol. 2004;78:4370. [PMC free article] [PubMed] [Google Scholar]

47. Ronne M. Localization of fragile sites in the karyotype of Felis catus. Hereditas. 1995;122:279. [PubMed] [Google Scholar]

48. Ronne M, Storm CO. The high resolution RBG-banded karyotype of Felis catus. In Vivo. 1992;6:517. [PubMed] [Google Scholar]

49. Ronne M, Storm CO. Localization of landmarks and bands in the karyotype of Felis catus. Cytobios. 1995;81:213. [PubMed] [Google Scholar]

50. Schlafer DH, Valentine B, Fahnestock G. A case of SRY-positive 38,XY true hermaphroditism (XY sex reversal) in a cat. Vet Pathol. 2010 Sep 22 [Epub ahead of print] [PMC free article] [PubMed] [Google Scholar]

51. Schmidt-Kuntzel A, Eizirik E, O’Brien SJ. Tyrosinase and tyrosinase related protein 1 alleles specify domestic cat coat color phenotypes of the albino and brown loci. J Hered. 2005;96:289. [PubMed] [Google Scholar]

52. Shibasaki Y, Flou S, Ronne M. The R-banded karyotype of Felis catus. Cytobios. 1987;51:35. [PubMed] [Google Scholar]

53. Stanyon R, Yang F, Cavagna P. Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet Cell Genet. 1999;84:150. [PubMed] [Google Scholar]

54. Thuline HC. Male tortoiseshell, chimerism and true hermaphroditism. J Cat Genet. 1964;4:2. [Google Scholar]

55. Wienberg J, Stanyon R. Chromosome painting in mammals as an approach to comparative genomics. Curr Opin Genet Dev. 1995;5:792. [PubMed] [Google Scholar]

56. Wienberg J, Stanyon R, Nash WG. Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet. 1997;77:211. [PubMed] [Google Scholar]

57. Wurster-Hill DH, Centerwall WR. The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids. Cytogenet Cell Genet. 1982;34:178. [PubMed] [Google Scholar]

58. Wurster-Hill DH, Doi T, Izawa M. Banded chromosome study of the Iriomote cat. J Hered. 1987;78:105. [PubMed] [Google Scholar]

59. Wurster-Hill DH, Gray CW. Giemsa banding patterns in the chromosomes of twelve species of cats (Felidae) Cytogenet Cell Genet. 1973;12:388. [PubMed] [Google Scholar]

60. Wurster-Hill DH, Gray CW. The interrelationships of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet Cell Genet. 1975;15:306. [PubMed] [Google Scholar]

61. Yang F, Graphodatsky AS, O’Brien PC. Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res. 2000;8:393. [PubMed] [Google Scholar]

62. Young AE, Biller DS, Herrgesell EJ. Feline polycystic kidney disease is linked to the PKD1 region. Mamm Genome. 2005;16:59. [PubMed] [Google Scholar]

Page 2

PMC full text:

Copyright/LicenseRequest permission to reuse

Copyright © 2012 Elsevier Inc. All rights reserved.

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

<< PrevFIGURE 43-1Next >>

Karyotype of the domestic cat. Domestic cats have 38 chromosomes, including 18 autosomal pairs and the sex chromosomes, X and Y. This karyotype depicts a female cat and therefore has two X chromosomes. Cat chromosomes have retained the historical nomenclature of being grouped into alphabetical categories that reference the size and position of the centromere.

(Courtesy Roscoe Stanyon.)

Click on the image to see a larger version.

Última postagem

Tag