Why is the normal range for the mass of dna in a male cat cell lower than for a female cat?

1. Benveniste RE, Todaro GJ. Segregation of RD-114 AND FeL-V-related sequences in crosses between domestic cat and leopard cat. Nature. 1975;257:506. [PMC free article] [PubMed] [Google Scholar]

2. Centerwall WR, Benirschke K. Animal model for the XXY Klinefelter's syndrome in man: tortoiseshell and calico male cats. Am J Vet Res. 1975;36:1275. [PubMed] [Google Scholar]

3. Cho KW, Youn HY, Watari T. A proposed nomenclature of the domestic cat karyotype. Cytogenet Cell Genet. 1997;79:71. [PubMed] [Google Scholar]

4. Chu EHY, Thuline HC, Norby DE. Triploid-diploid chimerism in a male tortoiseshell cat. Cytogenetics. 1964;24:1. [PubMed] [Google Scholar]

5. Cooper MP, Fretwell N, Bailey SJ. White spotting in the domestic cat (Felis catus) maps near KIT on feline chromosome B1. Anim Genet. 2006;37:163. [PMC free article] [PubMed] [Google Scholar]

6. Cox DR, Burmeister M, Price ER. Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science. 1990;250:245. [PubMed] [Google Scholar]

7. Doncaster L. On the inheritance of tortoiseshell and related colours in cats. Proc Camb Philol Soc. 1904;13:35. [Google Scholar]

8. Fyfe JC, Menotti-Raymond M, David VA. An approximately 140-kb deletion associated with feline spinal muscular atrophy implies an essential LIX1 function for motor neuron survival. Genome Res. 2006;16:1084. [PMC free article] [PubMed] [Google Scholar]

9. Grahn RA, Lemesch BM, Millon LV. Localizing the X-linked orange colour phenotype using feline resource families. Anim Genet. 2005;36:67. [PubMed] [Google Scholar]

10. Gregson NM, Ishmael J. Diploid triploid chimerism in three tortoiseshell cats. Res Vet Sci. 1971;12:275. [PubMed] [Google Scholar]

11. Haskins M. Gene therapy for lysosomal storage diseases (LSDs) in large animal models. Ilar J. 2009;50:112. [PMC free article] [PubMed] [Google Scholar]

12. He Q, Lowrie C, Shelton GD. Inherited motor neuron disease in domestic cats: a model of spinal muscular atrophy. Pediatr Res. 2005;57:324. [PubMed] [Google Scholar]

Hill's Press Release, Topeka, Kansas, July 20, 2008.

13. Imes DL, Geary LA, Grahn RA. Albinism in the domestic cat (Felis catus) is associated with a tyrosinase (TYR) mutation. Anim Genet. 2006;37:175. [PMC free article] [PubMed] [Google Scholar]

14. Ishihara T. Cytological studies on tortoiseshell male cats. Cytologia. 1956;21:391. [Google Scholar]

15. Johnson G. Gogees Cattery; Greenwell Springs, LA: 1991. The Bengal cat. [Google Scholar]

16. Johnson W, O’Brien SJ. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. J Mol Evol. 1997;44:s98. [PubMed] [Google Scholar]

17. Johnson WE, Eizirik E, Pecon-Slattery J. The late Miocene radiation of modern Felidae: a genetic assessment. Science. 2006;311:73. [PubMed] [Google Scholar]

18. Ke X, Kennedy LJ, Short AD. Assessment of the functionality of genome-wide canine SNP arrays and implications for canine disease association studies. Anim Genet. 2010 in press. [PubMed] [Google Scholar]

19. Kosowska B, Januszewski A, Tokarska M. Cytogenetic and histologic studies of tortoiseshell cats. Med Weter. 2001;57:475. [Google Scholar]

20. Kuiper H, Hewicker-Trautwein M, Distl O. [Cytogenetic and histologic examination of four tortoiseshell cats] Dtsch Tierarztl Wochenschr. 2003;110:457. [PubMed] [Google Scholar]

21. Louwerens M, London CA, Pedersen NC. Feline lymphoma in the post-feline leukemia virus era. J Vet Intern Med. 2005;19:329. [PubMed] [Google Scholar]

22. Lyons LA, Bailey SJ, Baysac KC. The Tabby cat locus maps to feline chromosome B1. Anim Genet. 2006;37:383. [PMC free article] [PubMed] [Google Scholar]

23. Lyons LA, Imes DL, Rah HC. Tyrosinase mutations associated with Siamese and Burmese patterns in the domestic cat (Felis catus) Anim Genet. 2005;36:119. [PubMed] [Google Scholar]

24. Menotti-Raymond M, David VA, Agarwala R. Radiation hybrid mapping of 304 novel microsatellites in the domestic cat genome. Cytogenet Genome Res. 2003;102:272. [PubMed] [Google Scholar]

25. Menotti-Raymond M, David VA, Chen ZQ. Second-generation integrated genetic linkage/radiation hybrid maps of the domestic cat (Felis catus) J Hered. 2003;94:95. [PubMed] [Google Scholar]

26. Menotti-Raymond M, David VA, Lyons LA. A genetic linkage map of microsatellites in the domestic cat (Felis catus) Genomics. 1999;57:9. [PubMed] [Google Scholar]

27. Menotti-Raymond M, David VA, Schaffer AA. Mutation in CEP290 discovered for cat model of human retinal degeneration. J Hered. 2007;98:211. [PubMed] [Google Scholar]

28. Menotti-Raymond M, David VA, Schaffer AA. An autosomal genetic linkage map of the domestic cat, Felis silvestris catus. Genomics. 2008 [PMC free article] [PubMed] [Google Scholar]

29. Menotti-Raymond M, Deckman K, David V. Mutation discovered in a feline model of human congenital retinal blinding disease. Invest Ophthalmol Vis Sci. 2010;51:2852. [PMC free article] [PubMed] [Google Scholar]

30. Murphy WJ, Davis B, David VA. A 1.5-Mb-resolution radiation hybrid map of the cat genome and comparative analysis with the canine and human genomes. Genomics. 2006 [PMC free article] [PubMed] [Google Scholar]

31. Murphy WJ, Menotti-Raymond M, Lyons LA. Development of a feline whole genome radiation hybrid panel and comparative mapping of human chromosome 12 and 22 loci. Genomics. 1999;57:1. [PubMed] [Google Scholar]

32. Murphy WJ, Sun S, Chen Z. A radiation hybrid map of the cat genome: implications for comparative mapping. Genome Res. 2000;10:691. [PMC free article] [PubMed] [Google Scholar]

33. Murphy WJ, Sun S, Chen ZQ. Extensive conservation of sex chromosome organization between cat and human revealed by parallel radiation hybrid mapping. Genome Res. 1999;9:1223. [PMC free article] [PubMed] [Google Scholar]

34. Nash WG, O’Brien SJ. Conserved regions of homologous G-banded chromosomes between orders in mammalian evolution: carnivores and primates. Proc Natl Acad Sci U S A. 1982;79:6631. [PMC free article] [PubMed] [Google Scholar]

35. O’Brien SJ, Cevario SJ, Martenson JS. Comparative gene mapping in the domestic cat (Felis catus) J Hered. 1997;88:408. [PubMed] [Google Scholar]

36. O’Brien SJ, Haskins ME, Winkler CA. Chromosomal mapping of beta-globin and albino loci in the domestic cat. A conserved mammalian chromosome group. J Hered. 1986;77:374. [PubMed] [Google Scholar]

37. O’Brien SJ, Nash WG. Genetic mapping in mammals: chromosome map of domestic cat. Science. 1982;216:257. [PubMed] [Google Scholar]

38. O’Brien SJ, Wienberg J, Lyon LA. Comparative genomics: lessons from cats. Trends Genet. 1997;13:393. [PubMed] [Google Scholar]

39. Pedersen NC, Allen CE, Lyons LA. Pathogenesis of feline enteric coronavirus infection. J Feline Med Surg. 2008;10:529. [PMC free article] [PubMed] [Google Scholar]

40. Pedersen NC, Barlough JE. Clinical overview of feline immunodeficiency virus. J Am Vet Med Assoc. 1991;199:1298. [PubMed] [Google Scholar]

41. Pontius JU, Mullikin JC, Smith DR. Initial sequence and comparative analysis of the cat genome. Genome Res. 2007;17:1675. [PMC free article] [PubMed] [Google Scholar]

42. Pyle RL, Patterson DF, Hare WC. XXY sex chromosome constitution in a Himalayan cat with tortoise-shell points. J Hered. 1971;62:220. [PubMed] [Google Scholar]

43. Rasheed S, Gardner MB. Isolation of feline leukemia virus from a leopard cat cell line and search for retrovirus in wild felidae. J Natl Cancer Inst. 1981;67:929. [PubMed] [Google Scholar]

44. Rettenberger G, Klett C, Zechner U. ZOO-FISH analysis: cat and human karyotypes closely resemble the putative ancestral mammalian karyotype. Chromosome Res. 1995;3:479. [PubMed] [Google Scholar]

45. Roca AL, Nash WG, Menninger JC. Insertional polymorphisms of endogenous feline leukemia viruses. J Virol. 2005;79:3979. [PMC free article] [PubMed] [Google Scholar]

46. Roca AL, Pecon-Slattery J, O’Brien SJ. Genomically intact endogenous feline leukemia viruses of recent origin. J Virol. 2004;78:4370. [PMC free article] [PubMed] [Google Scholar]

47. Ronne M. Localization of fragile sites in the karyotype of Felis catus. Hereditas. 1995;122:279. [PubMed] [Google Scholar]

48. Ronne M, Storm CO. The high resolution RBG-banded karyotype of Felis catus. In Vivo. 1992;6:517. [PubMed] [Google Scholar]

49. Ronne M, Storm CO. Localization of landmarks and bands in the karyotype of Felis catus. Cytobios. 1995;81:213. [PubMed] [Google Scholar]

50. Schlafer DH, Valentine B, Fahnestock G. A case of SRY-positive 38,XY true hermaphroditism (XY sex reversal) in a cat. Vet Pathol. 2010 Sep 22 [Epub ahead of print] [PMC free article] [PubMed] [Google Scholar]

51. Schmidt-Kuntzel A, Eizirik E, O’Brien SJ. Tyrosinase and tyrosinase related protein 1 alleles specify domestic cat coat color phenotypes of the albino and brown loci. J Hered. 2005;96:289. [PubMed] [Google Scholar]

52. Shibasaki Y, Flou S, Ronne M. The R-banded karyotype of Felis catus. Cytobios. 1987;51:35. [PubMed] [Google Scholar]

53. Stanyon R, Yang F, Cavagna P. Reciprocal chromosome painting shows that genomic rearrangement between rat and mouse proceeds ten times faster than between humans and cats. Cytogenet Cell Genet. 1999;84:150. [PubMed] [Google Scholar]

54. Thuline HC. Male tortoiseshell, chimerism and true hermaphroditism. J Cat Genet. 1964;4:2. [Google Scholar]

55. Wienberg J, Stanyon R. Chromosome painting in mammals as an approach to comparative genomics. Curr Opin Genet Dev. 1995;5:792. [PubMed] [Google Scholar]

56. Wienberg J, Stanyon R, Nash WG. Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting. Cytogenet Cell Genet. 1997;77:211. [PubMed] [Google Scholar]

57. Wurster-Hill DH, Centerwall WR. The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids. Cytogenet Cell Genet. 1982;34:178. [PubMed] [Google Scholar]

58. Wurster-Hill DH, Doi T, Izawa M. Banded chromosome study of the Iriomote cat. J Hered. 1987;78:105. [PubMed] [Google Scholar]

59. Wurster-Hill DH, Gray CW. Giemsa banding patterns in the chromosomes of twelve species of cats (Felidae) Cytogenet Cell Genet. 1973;12:388. [PubMed] [Google Scholar]

60. Wurster-Hill DH, Gray CW. The interrelationships of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet Cell Genet. 1975;15:306. [PubMed] [Google Scholar]

61. Yang F, Graphodatsky AS, O’Brien PC. Reciprocal chromosome painting illuminates the history of genome evolution of the domestic cat, dog and human. Chromosome Res. 2000;8:393. [PubMed] [Google Scholar]

62. Young AE, Biller DS, Herrgesell EJ. Feline polycystic kidney disease is linked to the PKD1 region. Mamm Genome. 2005;16:59. [PubMed] [Google Scholar]


Page 2

PMC full text:

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

<< PrevFIGURE 43-1Next >>

Why is the normal range for the mass of dna in a male cat cell lower than for a female cat?

Karyotype of the domestic cat. Domestic cats have 38 chromosomes, including 18 autosomal pairs and the sex chromosomes, X and Y. This karyotype depicts a female cat and therefore has two X chromosomes. Cat chromosomes have retained the historical nomenclature of being grouped into alphabetical categories that reference the size and position of the centromere.

(Courtesy Roscoe Stanyon.)

  • Why is the normal range for the mass of dna in a male cat cell lower than for a female cat?
  • Why is the normal range for the mass of dna in a male cat cell lower than for a female cat?

Click on the image to see a larger version.