Faça uma lista com outros tipos de máquinas térmicas que você conhece além dos trens e automóveis

Matemática, 15.08.2019 03:22, KimberllyKethley

gente me 14. (puc rj/2014) uma caixa de massa 10 kg, inicialmenterepouso em uma superfície horizontal sem atrito, comeser puxada por uma força constante de módulo f.como mostrado na figura.30°a velocidade da caixa após 2,0 segundos é, em m/s: considere: √2 = 14 e ſ3 = 1,7sen 30º = 42cos 30º = 13/2a)1,7b)1,0c)2,0d)0,86e)3,4​

Total de respostas: 1

Máquinas térmicas são dispositivos que absorvem calor de uma fonte e convertem-no parcialmente em energia mecânica. Todas elas operam em ciclos e, ao final de um ciclo completo, os parâmetros de pressão, volume e temperatura (P,V,T) relacionados à substância de trabalho que é usada pela máquina sempre retomam seus valores iniciais (P0, V0, T0).

A importância das máquinas térmicas é incontestável para nosso modelo de sociedade atual, em que fazemos uso de motores de combustão interna para um grande número de atividades e processos tecnológicos.

Veja também: Grafeno – o material mais resistente já descoberto

Faça uma lista com outros tipos de máquinas térmicas que você conhece além dos trens e automóveis
As máquinas térmicas movidas a vapor já foram usadas para bombear água, como mostra a figura.

Introdução às máquinas térmicas

Máquinas térmicas são capazes de converter parcialmente o calor proveniente de uma fonte térmica em energia mecânica – cinética ou potencial. Nenhuma máquina térmica é perfeita, ou seja, mesmo a melhor máquina térmica já inventada jamais poderia ter um rendimento igual a 100%.

A razão pela qual não é possível existir uma máquina térmica perfeita é a 2ª lei da Termodinâmica, que diz o seguinte:

“Não é possível que qualquer sistema, a certa temperatura, absorva calor de uma fonte e transforme-o integralmente em trabalho mecânico, sem que ocorram modificações nesse sistema ou em suas vizinhanças.”

A forma como a segunda lei encontra-se escrita acima é conhecida como o enunciado de Kelvin. Segundo tal enunciado, em um ciclo completo, é impossível que uma máquina térmica converta integralmente calor em trabalho mecânico. Tal impossibilidade decorre do fato de que a máquina precisa “perder” parte da energia que absorve para retornar ao estado termodinâmico inicial de seu ciclo de funcionamento.

Faça uma lista com outros tipos de máquinas térmicas que você conhece além dos trens e automóveis
Em todas as máquinas térmicas, há uma fonte quente e uma fonte fria.

Chamamos de trabalho a porção de energia que uma máquina térmica foi capaz de converter em energia mecânica. Tal quantidade de energia pode ser calculada diretamente pela diferença entre a quantidade de calor que a máquina absorve de uma fonte quente pela quantidade de calor que a máquina dissipa para o meio externo, que comumente é chamado de fonte fria. A fórmula que é usada para calcular o trabalho realizado por uma máquina térmica é a seguinte:

τ – trabalho (J – joule ou cal – caloria)

QQ e QF – calor quente e calor frio

As máquinas térmicas estão presentes em nosso dia a dia e são fundamentais para o funcionamento de diversas tecnologias. Confira alguns exemplos:

  • motores de combustão interna – motores movidos a gasolina, álcool, diesel, GLP e querosene;

  • máquinas movidas a vapor – locomotivas, máquinas de tecer;

  • usinas termoelétricas;

  • refrigeradores e ar-condicionado – máquinas térmicas invertidas, chamadas de refrigeradores ou bombas de calor.

Veja também: Computadores quânticos – limites, possibilidades e características

Rendimento das máquinas térmicas

O rendimento das máquinas térmicas é sempre inferior a 100%, como já dissemos. Tal rendimento diz respeito à porcentagem da energia absorvida pela máquina que é convertida em calor ao longo de um ciclo completo. O cálculo do rendimento, feito em porcentagem, pode ser realizado se conhecemos parâmetros como a quantidade de calor “quente” (que é absorvida pela máquina a partir da fonte quente) e a quantidade de calor “frio” (cedido pela máquina à fonte fria).

A fórmula para calcular o rendimento das máquinas térmicas é a seguinte:

A fórmula do rendimento também pode ser escrita em termos do trabalho realizado pela máquina. Nesse caso, o rendimento é calculado pela razão entre o trabalho e a quantidade de calor absorvida pela máquina.

Para obter o rendimento da máquina em porcentagem, multiplica-se o resultado obtido nas fórmulas acima pelo fator 100.

Ciclo termodinâmico das máquinas térmicas

Ciclo termodinâmico é a sequência de estados que a substância de trabalho da máquina térmica passa a fim de que a máquina opere corretamente, convertendo calor em trabalho. Esse ciclo é geralmente representado na forma de um gráfico de P x V (pressão em função do volume). Além disso, o sentido das setas indica se o ciclo é relacionado a uma máquina térmica ou a um refrigerador, caso sejam representadas, respectivamente, no sentido horário e anti-horário.

A figura abaixo mostra o ciclo termodinâmico de uma máquina térmica genérica. Observe:

Faça uma lista com outros tipos de máquinas térmicas que você conhece além dos trens e automóveis
O ciclo termodinâmico representado na figura é utilizado nos motores movidos a gasolina.

Ciclo de Carnot

O ciclo de Carnot é um ciclo termodinâmico ideal cujo funcionamento apresenta o maior rendimento possível, dadas duas temperaturas de funcionamento (da fonte quente e da fonte fria). Dessa maneira, é esperado que uma máquina térmica real, como o motor de um carro, apresente um ciclo de formato mais próximo possível ao ciclo de Carnot.

Exercícios resolvidos sobre máquinas térmicas

Questão 1 — (Enem) No Brasil, o sistema de transporte depende do uso de combustíveis fósseis e de biomassa, cuja energia é convertida em movimento de veículos. Para esses combustíveis, a transformação de energia química em energia mecânica acontece:

a) na combustão, que gera gases quentes para mover os pistões no motor

b) nos eixos, que transferem torque às rodas e impulsionam o veículo

c) na ignição, quando a energia elétrica é convertida em trabalho

d) na exaustão, quando gases quentes são expelidos para trás

e) na carburação, com a difusão do combustível no ar

Resolução:

A energia obtida pelos motores de combustão interna vem da queima de combustíveis fósseis. Junto à combustão, há uma grande expansão do volume de gás no interior dos pistões, gerando movimento. Portanto, a alternativa correta é a letra A.

Questão 2 — (AFA) Com relação às máquinas térmicas e a Segunda Lei da Termodinâmica, analise as proposições a seguir.

I. Máquinas térmicas são dispositivos usados para converter energia mecânica em energia térmica com consequente realização de trabalho.

II. O enunciado da Segunda Lei da Termodinâmica, proposto por Clausius, afirma que o calor não passa espontaneamente de um corpo frio para um corpo mais quente, a não ser forçado por um agente externo, como é o caso do refrigerador.

III. É possível construir uma máquina térmica que, operando em transformações cíclicas, tenha como único efeito transformar completamente em trabalho a energia térmica de uma fonte quente.

IV. Nenhuma máquina térmica operando entre duas temperaturas fixadas pode ter rendimento maior que a máquina ideal de Carnot, operando entre essas mesmas temperaturas.

São corretas apenas:

a) I e II

b) II e III

c) I, III e IV

d) II e IV

Resolução:

Vamos analisar as alternativas:

I – FALSA. Máquinas térmicas são dispositivos que transformam energia térmica em energia mecânica, realizando trabalho durante esse processo.

II – VERDADEIRA.

III – FALSA. De acordo com a segunda lei da Termodinâmica, nenhuma máquina térmica que opere em ciclos é capaz de retirar calor de uma fonte e transformá-lo integralmente em trabalho.

IV – VERDADEIRA.

Com base nas análises acima, a resposta correta é a letra D.  

Máquinas térmicas são dispositivos capazes de transformar energia térmica em trabalho mecânico. Toda máquina térmica necessita de uma fonte de calor e de uma substância de trabalho capaz de ter o seu volume modificado e, consequentemente, movimentar algum mecanismo, como válvulas ou pistões.

Os motores de combustão interna, como aqueles que movem os automóveis atuais, são exemplos de máquinas térmicas. Eles absorvem o calor que é produzido a partir da queima de uma mistura de combustível e ar, que é periodicamente injetada no interior de seus cilindros.

Desse modo, parte da energia que é liberada durante a explosão é convertida em trabalho, por meio do movimento do pistão – uma das partes móveis do motor, usada para converter a energia térmica em energia cinética.

Faça uma lista com outros tipos de máquinas térmicas que você conhece além dos trens e automóveis
Os motores de combustão interna, como aqueles que movem os automóveis, são exemplos de máquinas térmicas.

Como funcionam as máquinas térmicas?

Todas as máquinas térmicas operam de acordo com um ciclo termodinâmico, isto é, sequências de estados termodinâmicos que se repetem. Esses ciclos apresentam diferentes estados de volume, pressão e temperatura, que são geralmente representados por gráficos de pressão em função do volume. Os ciclos termodinâmicos são projetados em busca da maior eficiência energética, ou seja, busca-se sempre a produção de motores capazes de extrair uma grande quantidade de trabalho.

Faça uma lista com outros tipos de máquinas térmicas que você conhece além dos trens e automóveis
A área do gráfico das máquinas térmicas indica a quantidade de trabalho que elas realizam durante um ciclo.

Em qualquer ciclo termodinâmico, é possível calcular o trabalho graficamente. Para tanto, é necessário calcular a área do interior do gráfico, o que pode ser complicado de ser feito, caso o ciclo em questão tenha algum formato irregular. Além disso, o sentido das setas, horário ou anti-horário, indica se o ciclo em questão é o ciclo de uma máquina térmica ou de um refrigerador. Confira:

  • Ciclo no sentido horário: Se o sentido do ciclo for horário, o ciclo é o de uma máquina térmica, a qual absorve calor e produze trabalho.

  • Ciclo no sentido anti-horário: No caso em que o sentido de um ciclo é anti-horário, ele precisa receber trabalho mecânico e liberar calor, como no caso dos motores de refrigerador.

Toda máquina térmica apresenta uma configuração similar: dispõe de uma fonte de calor (fonte quente), da qual extrai a energia necessária para o seu funcionamento, e um sorvedouro (fonte fria), para onde uma parte do calor absorvido é dissipada. Observe o esquema a seguir:

Faça uma lista com outros tipos de máquinas térmicas que você conhece além dos trens e automóveis
As máquinas térmicas absorvem calor e liberam trabalho, o contrário do que fazem os refrigeradores.

De acordo com a primeira lei da Termodinâmica, as máquinas térmicas precisam receber certa quantidade de calor para funcionar. No entanto, apenas uma pequena fração dessa quantidade de calor, que é uma forma de energia, pode ser convertida em trabalho útil.

As razões dessa limitação são essencialmente duas: a primeira diz respeito à capacidade técnica de se produzir uma máquina que não dissipe energia – o que é impossível –, e a segunda é uma limitação da própria natureza: pela 2ª lei da Termodinâmica, nenhuma máquina térmica pode apresentar um rendimento de 100%. Confira o que diz a 2ª lei da Termodinâmica, conhecida como lei da entropia, de acordo com o enunciado de Kelvin:

“Não é possível que qualquer sistema, a certa temperatura, absorva calor de uma fonte e transforme-o integralmente em trabalho mecânico, sem que ocorram modificações nesse sistema ou em suas vizinhanças.”

O enunciado de Kelvin diz respeito à conversão integral de calor em trabalho mecânico, afirmando que isso é impossível sem que ocorram “mudanças” no sistema. Essa mudança refere-se ao efeito da entropia: ao retirar calor de alguma fonte quente, parte dessa energia é degradada em formas menos úteis de energia. Os processos de degradação da energia são muitos: vibração das partes mecânicas, atrito entre peças e rolamentos, calor dissipado para o meio externo, produção de ruídos sonoros etc.

Veja também: Conheça a história das máquinas térmicas

Mapa Mental: Máquinas Térmicas

*Para baixar o mapa mental em PDF, clique aqui!

Rendimento das máquinas térmicas

O rendimento de qualquer máquina térmica pode ser calculado como a razão do trabalho mecânico que ela produz pela quantidade de calor que ela absorve de alguma fonte quente:

η – Rendimento

τ – Trabalho mecânico (J – joules ou cal - calorias)

QQ – Calor proveniente da fonte quente (J – joules ou cal - calorias)

O trabalho mecânico, por sua vez, é determinado pela diferença entre as quantidades de calor “quente” e “frio”, portanto, podemos escrever o rendimento das máquinas térmicas por meio dessas quantidades:

QF – calor cedido para a fonte fria

Buscando determinar qual seriam as características do ciclo termodinâmico “perfeito”, o físico francês Sadi Carnot desenvolveu um ciclo que, ao menos teoricamente, apresenta a maior eficiência possível para uma máquina térmica que opere nas mesmas temperaturas.

Esse ciclo, conhecido como o ciclo de Carnot, popularmente chamado de máquina de Carnot, não é uma máquina real, visto que até, os dias atuais, impossibilidades técnicas e práticas impediram a construção de tal máquina.

Veja também: O que é calor latente?

Teorema de Carnot

O teorema de Carnot, enunciado no ano de 1824, estabelece que mesmo a máquina térmica ideal, que não dissipe nenhuma quantidade de energia em razão do atrito entre suas partes móveis, apresenta um limite de rendimento máximo, que depende da razão entre as temperaturas de sua fonte quente e fria, dadas em kelvin:

TQ – Temperatura da fonte quente (K)

TF – Temperatura da fonte fria (K)

Analisando a fórmula acima, é possível perceber que a máquina térmica ideal tem o seu rendimento determinado exclusivamente pelas temperaturas de suas fontes fria e quente. Além disso, para que o seu rendimento fosse de 100%, seria necessário que a TF fosse nula, ou seja, 0 K, a temperatura do zero absoluto. Entretanto, de acordo com a 3ª Lei da Termodinâmica, tal temperatura é inatingível.

A fórmula de rendimento mostrada acima só é válida para as máquinas térmicas que operem segundo o ciclo de Carnot. Além disso, o teorema também mostra que a razão entre as temperaturas TF e TQ é igual à razão entre as quantidades de calor QF e QQ:

Veja também: Aprenda mais sobre o rendimento de máquinas térmicas

Ciclo de Carnot

O ciclo de Carnot ocorre em quatro etapas (ou quatro tempos). Esse ciclo é formado por duas transformações adiabáticas e duas transformações isotérmicas. As transformações adiabáticas são aquelas em que não há trocas de calor, enquanto as transformações isotérmicas são aquelas em que não há variação de temperatura e, consequentemente, a energia interna da substância de trabalho responsável por movimentar a máquina térmica permanece constante.

A figura a seguir representa o ciclo de Carnot e suas quatro etapas. Confira:

I – Expansão isotérmica: Nessa etapa, a substância de trabalho expande-se mantendo sua temperatura constante, realiza trabalho e recebe calor da fonte quente.

II – Expansão adiabática: Nessa etapa, a substância de trabalho expande-se um pouco e realiza trabalho sem receber calor.

III – Contração isotérmica: Nessa etapa, o volume do gás diminui, sua pressão aumenta e sua temperatura permanece constante, além disso, o gás perde calor para a fonte fria. Nessa etapa, realiza-se trabalho sobre o gás.

IV – Contração adiabática: O gás tem um rápido aumento de pressão e pouca diminuição de volume, mas não troca calor durante o processo.

Ciclo Otto

O ciclo Otto é uma sequência de transformações físicas sofridas por alguma substância de trabalho como a gasolina ou o etanol. Esse ciclo é amplamente usado nos motores a combustão interna que movem a maioria dos veículos de passeio. Apesar de não existir na prática, o ciclo Otto foi projetado para aproximar-se de um ciclo de Carnot. A figura a seguir mostra quais são as etapas do ciclo Otto.

Faça uma lista com outros tipos de máquinas térmicas que você conhece além dos trens e automóveis
O ciclo Otto é o ciclo dos motores movidos a gasolina.

I - Processo 0-1: Admissão isobárica: Nesse processo, uma mistura de ar e gasolina é admitida pelo motor a uma pressão constante;

II - Processo 1-2: Compressão adiabática – Nesse processo, há um rápido aumento de pressão que é exercida pelos pistões do motor, de modo que não haja tempo para que ocorram trocas de calor;

III - Processo 2-3-4: Combustão a volume constante (2-3) e expansão adiabática (3-4) – Uma pequena fagulha produz uma explosão controlada na mistura de ar e gasolina e, então, o pistão do motor desce rapidamente, provocando um aumento de volume e produzindo uma grande quantidade de trabalho;

IV - Processo 4-1-0: Exaustão isobárica – As válvulas de exaustão abrem-se e deixam a fumaça da queima do combustível sair pelo motor a uma pressão constante.

As etapas explicadas acima são mostradas na figura a seguir, que representa as etapas de funcionamento de um motor de quatro tempos, movido a gasolina ou álcool. O movimento do pistão em cada uma das posições mostradas equivale aos processos descritos:

Exemplos de máquinas térmicas

São exemplos de máquinas térmicas:

  • Motores de combustão interna, como aqueles movidos a álcool, gasolina e diesel;

  • Máquinas a vapor;

  • Usinas termoelétricas.

Maquinas térmicas e a Revolução industrial

As máquinas térmicas desempenharam um papel de grande importância para o desenvolvimento tecnológico da sociedade. Depois de aperfeiçoadas por James Watt, as máquinas térmicas movidas a vapor permitiram que a Revolução Industrial acontecesse, mudando o mundo de forma radical.

Gostaria de saber mais sobre esse assunto? Acesse o nosso texto sobre a Revolução Industrial.

Refrigeradores

Os refrigeradores, ou máquinas frigoríficas, são máquinas térmicas invertidas. Nesses dispositivos, é necessário que se realize um trabalho sob o gás no interior do motor para que ele se expanda ao absorver calor das vizinhanças. São exemplos de refrigeradores: geladeiras, freezers e ar-condicionado.

Se você quiser saber mais sobre o funcionamento desse tipo de máquina, acesse o nosso texto sobre o funcionamento e propriedades dos refrigeradores.

Exercícios sobre máquinas térmicas

Exercício 1) Uma máquina térmica recebe 500 J de calor de uma fonte quente a cada ciclo de operação. Se essa máquina dissipar 350 J de calor para o seu sorvedouro frio, qual será o seu rendimento energético em porcentagem?

a) 42%

b) 50 %

c) 30 %

d) 35%

e) 25%

Gabarito: Letra C

Resolução:

O exercício fornece as quantidades de calor necessárias para máquina operar durante um ciclo, portanto, podemos determinar o seu rendimento utilizando a fórmula que relaciona QQ e QF, veja:

O cálculo acima indica que somente 30% da energia térmica da qual o motor dispõe a cada ciclo é transformada em trabalho mecânico.

Exercício 2) Uma máquina que opera segundo o ciclo de Carnot tem as temperaturas de sua fonte quente e fria de 600 k e 400 k, respectivamente. Essa máquina dissipa 800 j de calor para sua fonte de menor temperatura a cada ciclo. Calcule a quantidade de calor quente absorvido pela máquina a cada ciclo e o seu rendimento em porcentagem e em seguida, assinale a alternativa correta.

a) 67% e 320 j

b) 33% e 1200 j

c) 33% e 1900 j

d) 62% e 1900 j

e) 80 % e 900 j

Gabarito: Letra B

Resolução:

Primeiramente, vamos calcular o rendimento da máquina térmica em questão. Para tanto, utilizaremos as temperaturas das fontes quente e fria:

Usando os valores de temperatura informados no enunciado, temos que resolver o seguinte cálculo:

Para calcularmos a quantidade de calor que a máquina absorve a cada ciclo é simples, basta usarmos o teorema de Carnot:

Para resolvermos o cálculo, basta substituirmos os dados do exercício na fórmula acima.


Por Me. Rafael Helerbrock