Exercícios sobre raiz quadrada de números inteiros

A raiz quadrada é uma operação matemática que acompanha todos os níveis escolares. Trata-se de um caso particular de radiciação, no qual o índice do radical é igual a 2, ou seja, é a operação inversa das potências de expoente igual a 2. Quando um número positivo possui raiz quadrada exata, dizemos que esse número é um quadrado perfeito.

Leia também: Propriedades envolvendo números complexos

Definição e nomenclatura dos elementos da radiciação

Sejam a e b dois números reais e n um número natural diferente de zero, então:

Exercícios sobre raiz quadrada de números inteiros

a = radicando
n = índice
= radical

As raízes quadradas, como dito, são um caso particular de radiciação. Ao escrever uma raiz quadrada, não é necessário explicitar o índice igual a dois.

Para os demais tipos de raízes, é obrigatório colocar o índice, ou seja, para n = 3, n = 4, n = 5 …, é necessário deixar explícito no índice do radical o valor de n.

Leia também: Redução de radicais ao mesmo índice

Para calcular a raiz quadrada de um número real, basta seguir a definição de radiciação:

A definição nos diz que a raiz quadrada de um número real a é o número b se, e somente se, o número b elevado ao quadrado for igual ao número a, ou seja, temos que imaginar um número que, ao quadrado, resulte no número dentro do radical.

Exemplos:

√36 = 6, pois 62 = 36

√121 = 11, pois 112  = 121

Os números que possuem raiz quadrada são denominados quadrados perfeitos. Assim, dos exemplos acima, os números 36 e 121 são quadrados perfeitos. Quando o número não é um quadrado perfeito, é necessário realizar o cálculo de raízes não exatas.

Exercícios sobre raiz quadrada de números inteiros
Raiz quadrada de um número qualquer, representado por x.

Observações:

1. Perceba, com base na definição de raiz quadrada, que sempre procuramos um número que, quando elevado ao quadrado, resulta no número dentro do radical. Tendo em vista as propriedades da potenciação, sabemos que um número ao quadrado é sempre positivo. Isso nos leva a concluir que não é possível extrair raiz quadrada de um número negativo no conjunto dos números reais.

Exemplo:

— 36 = ?

Do exemplo acima, teríamos que imaginar um número que, elevado ao quadrado, resultaria em -36. No conjunto dos números reais, isso não é impossível.

2. Caso o radicando seja um número relativamente grande, o que impossibilitaria o cálculo mental, basta fazer a decomposição em primos e agrupar sempre que possível em potências de expoente dois.

Exemplo:

Vamos determinar o valor da raiz quadrada de 441.

√441

Para determinar a raiz de 441, vamos fazer a decomposição em primos:

441 = 32 . 72

Assim,

√441 = √32 . 72

Agora, aplicando as propriedades de radiciação, temos que:

√441 = 3 . 7 = 21

O número 21 elevado ao quadrado é igual a 441.

Mapa Mental: Raiz Quadrada

*Para baixar o mapa mental em PDF, clique aqui!

Interpretação geométrica da raiz quadrada

Imagine um terreno com área de 144 m2.

Para determinar quanto mede o lado desse terreno em forma de quadrado, temos que relembrar como calcular sua área.

Aquadrado = l2

A representa o valor da área, e l é o valor do lado.

Como a área vale 144 m2, temos que:

144= l2

Observe a equação acima. Note que precisamos encontrar um número que, elevado ao quadrado, seja igual a 144, isto é, temos a definição de raiz quadrada! Então:

√144 = 12

O número 144 na forma fatorada é:

144 = 22 . 22 . 32

Assim, vamos ter que:

√144 = √22 . 22 . 32

Por fim,

√144 = 2 . 2 . 3 = 12

Portanto, o lado do terreno mede 12 m.

Exercícios resolvidos

1. Elabore uma lista com os quadrados perfeitos de 1 a 100.

Os quadrados perfeitos de 1 a 100 são: 1, 4, 9, 16, 25, 36, 49, 64, 81 e 100

2. Determine a raiz quadrada do número 1024.

1024

Para determinar a raiz de 1024, vamos fazer a decomposição em primos:

1024 = 22 . 22 . 22 . 22 . 22

Então,

 Considerando a segunda igualdade com as propriedades da radiciação já aplicadas.

*Mapa Mental por Luiz Paulo Silva
Graduado em Matemática

Por Robson Luiz
Professor de Matemática

Professor de Matemática e Ciências Antonio Carlos Carneiro Barroso

Colégio Estadual Dinah Gonçalves

email

Blog HTTP://ensinodematemtica.blogspot.com

extraído do /jmpmat13.blogspot.com

POTENCIAÇÃO A potenciação é uma multiplicação de fatores iguais Exemplos 2³ = 2 .2 .2 = 8 Você sabe também que: 2 é a base 3 é o expoente 8 é a potência ou resultado 1) O expoente é par a) (+7)² = (+7) . (+7) = +49 b) (-7)² = (-7) . (-7) = +49 c) (+2)⁴ = (+2) . (+2) . (+2) . (+2) = + 16 d) (-2)⁴ = (-2) . (-2) . (-2) . (-2) = + 16 Conclusão : Quando o expoente for par, a potencia é um número positivo 2) Quando o expoente for impar a) (+4)³ = (+4) . (+4) . (+4) = + 64 b) (-4)³ = (-4) . (-4) . (-4) = - 64 c) (+2)⁵ = (+2) . (+2) . (+2) . (+2) . (+2) = +32 d) (-2)⁵ = (-2) . (-2) . (-2) . (-2) . (-2) = -32 Conclusão : Quando o expoente é impar, a potência tem o mesmo sinal da base. EXERCÍCIOS 1) Calcule as potências ;

a) (+7)²= (+49)


b) (+4)² = (+16)
c) (+3)² = (+9)
d) (+5)³ = (+125)
e) (+2)³ = (+8)
f) (+3)³ = (+27)
g) (+2)⁴ = (+16)
h) (+2)⁵ = +32
i) (-5)² = +25
j) (-3)² = +9
k) (-2)³ = -8
l) (-5)³ = -125
m) (-1)³ = -1
n) (-2)⁴ = +16
o) (-3)³ = -27
p) (-3)⁴ = +81 2) Calcule as potencias:

a) (-6)² = +36


b) (+3)⁴ = +81
c) (-6)³ = -216
d) (-10)² = +100
e) (+10)² = +100
f) (-3)⁵ = -243
g) (-1)⁶ = +1h) (-1)³ = -1
i) (+2)⁶ = +64
j) (-4)² = +16
k) (-9)² = +81
l) (-1)⁵⁴ = +1
m) (-1)¹³ = -1
n) (-4)³ = -64
o) (-8)² = +64
p) (-7)² = +49 3) Calcule as potencias

a) 0⁷ = 0


b) (-2)⁸ = 256
c) (-3)⁵ = -243
d) (-11)³ = -1331
e) (-21)² = 441
f) (+11)³ = +1331
g) (-20)³ = -8000
h) (+50)² = 2500 4) Calcule o valor das expressões (primeiro as potências)

a) 15 + (+5)² = 40


b) 32 – (+7)² = -17
c) 18 + (-5)² = 43
d) (-8)² + 14 = 78
e) (-7)² - 60 = -11f) 40 – (-2)³ = 48
g) (-2)⁵ + 21 = -11
h) (-3)³ - 13 = -40
i) (-4)² + (-2)⁴ = 32
j) (-3)² + (-2)³ =1
k) (-1)⁶ + (-3)³ = -26
l) (-2)³ + (-1)⁵ = -9

CONVEÇÕES:

Todo o número inteiro elevado a 1 é igual a ele mesmo. Exemplos: a) (+7)¹ = +7 b) (-3)¹ = -3 Todo o número inteiro elevado a zero é igual a 1. Exemplos: a) (+5)⁰ = 1 b) (-8)⁰= 1 IMPORTANTE! Observe como a colocação dos parênteses é importante: a) (-3)² = (-3) . (-3) = +9 b) -3² = -(3 . 3) = -9 Para que a base seja negativa, ela deve estar entre parênteses. EXERCÍCIOS 1) Calcule as potências:

a) (+6)¹ = +6


b) (-2)¹ = -2c) (+10)¹ = +10
d) (-4)⁰ = +1e) (+7)⁰ = +1
f) (-10)⁰ = +1
g) (-1)⁰ = +1
h) (+1)⁰ = +1
i) (-1)⁴²³ = -1j) (-50)¹ = -50
k) (-100)⁰ = +1
l) 20000⁰ = +1 2) Calcule:

a) (-2)⁶ = 64


b) -2⁶ = -64 Os resultados são iguais ou diferentes? R: Deferentes 3) Calcule as potências:

a) (-5)² = 25


b) -5² = -25
c) (-7)² = +49
d) -7² = -49
e) (-1)⁴ = +1
f) -1⁴ = -1 4) Calcule o valor das expressões (primeiro as potências):

a) 35 + 5²= 60b) 50 - 4² = -14


c) -18 + 10² = 82
d) -6² + 20 = -16
e) -12-1⁷ = -13
f) -2⁵ - 40 = -72
g) 2⁵ + 0 - 2⁴ = 16
h) 2⁴ - 2² - 2⁰ = 11
i) -3² + 1 - .65⁰ = -9
j) 4² - 5 + 0 + 7² = 60
k) 10 - 7² - 1 + 2³ = -32
l) 3⁴ - 3³ + 3² - 3¹ + 3⁰ = 61

PROPRIEDADES

1) Produto de potência de mesma base: conserva-se a base e somam-se os expoentes.

Observe: a³ . a² = ( a .a .a ) . ( a .a ) = a⁵ Note que: a³ . a² = a³ ⁺ ² = a⁵ Exemplos a) (-5)⁷ . (-5)² = (-5) ⁷ ⁺ ² = (-5)⁹ b) (+2)³ . (+2)⁴ = (+2)³ ⁺ ⁴ = (+2)⁷ EXERCÍCIOS 1) Reduza a uma só potência:

a) 5⁶ . 5² = 5⁹


b) x⁷. x⁸= x¹⁵a) 2⁴ . 2 . 2⁹ = 2¹⁴
b) x⁵ .x³ . x = x⁹
c) m⁷ . m⁰ . m⁵ = m¹²
d) a . a² . a = a⁴ 1) Reduza a uma só potencia:

a) (+5)⁷ . (+5)² = (+5)⁹


b) (+6)² . (+6)³ = (+6)⁵
c) (-3)⁵ . (-3)² = (-3)⁷
d) (-4)² . (-4) = (-4)³
e) (+7) . (+7)⁴ = (+7)⁵
f) (-8) . (-8) . (-8) = (-8)³
g) (-5)³ . (-5) . (-5)² = (-5)⁶
h) (+3) . (+3) . (+3)⁷ = (+3)⁹
i) (-6)² . (-6) . (-6)² = (-6)⁵
j) (+9)³ . (+9) . (+9)⁴ = (+9)⁸

2) Divisão de potências de mesma base:

Observe: a⁵ : a² = (a . a . a . a .a ) : (a .a ) = a³ Note que: a⁵ : a² = a⁵⁻² = a³ Exemplos: a) (-5)⁸ : (-5)⁶ = (-5)⁸⁻⁶ = (-5)² b) (+7)⁹ : (+7)⁶ = (+7)⁹⁻⁶ = (+7)³ EXERCÍCIOS 1) Reduza a um asó potência:

a) a⁷ : a³ = a⁴


b) c⁸ : c² = c⁶
c) m³ : m =
d) x⁵ : x⁰ = x⁵
e) y²⁵ : y²⁵ = y⁰= 1f) a¹⁰² : a = a¹⁰¹ 2) Reduza a uma só potência:

a) (-3)⁷ : (-3)² = (-3)⁵


b) (+4)¹⁰ : (+4)³ = (+4)⁷
c) (-5)⁶ : (-5)² = (-5)⁴
d) (+3)⁹ : (+3) = (+3)⁸
e) (-2)⁸ : (-2)⁵ = (-2)³
f) (-3)⁷ : (-3) = (-3)⁶
g) (-9)⁴ : (-9) = (-9)³
h) (-4)² : (-4)² = (-4)⁰ = 1 3) Calcule os quocientes:

a) (-5)⁶ : (-5)⁴ = (R: 25)


b) (-3)⁵ : (-3)² = (R: -27 )
c) (-4)⁸ : (-4)⁵= (R: -64)
d) (-1)⁹ : (-1)² = (R: -1)
e) (-7)⁸ : (-7)⁶= (R: 49)
f) (+10)⁶ : (+10)³ = (R: 1000)

3) Potência de Potência:

Obeserve: (a²)³ = a²˙³ = a⁶ Exemplo: [(-2)³]⁴ = (-2)³˙⁴ = (-2)¹² EXERCÍCIOS 1) Aplique a propriedade de potência de potência.

a) [(-4)² ]³ = (-4)⁶


b) [(+5)³ ]⁴ = (+5)¹²
c) [(-3)³ ]² = (-3)⁶
d) [(-7)³ ]³ = (-7)⁹e) [(+2)⁴ ]⁵ = (+2)²⁰
f) [(-7)⁵ ]³ = (-7)¹⁵
g) [(-1)² ]² = (-1)⁴
h) [(+2)³ ]³ = (+2)⁹
i) [(-5)⁰ ]³ = (-5)⁰ = 1 2) Calcule o valor de:

a) [(+3)³]² = 729


b) [(+5)¹]⁵ = -243
c) [(-1)⁶]² = 1
d) [(-1)³]⁷ = -1e) [(-2)²]³ = 64
f) [(+10)²]² = 10000

4) Potência de um produto.

Obeserve: ( a . b )³ = ( a . b ) . (a . b ) . ( a . b ) = ( a . a . a ) . ( b . b . b ) = a³ . b³ Exemplos: [(-2) . (+5) ] = (-2)³ . (+5)³ EXERCÍCIOS 1) Aplique a propriedade de potência de um produto:

a) [(-2) . (+3)]⁵ = (-2)⁵ . (+3)⁵b) [(+5) . (-7)]³ = (+5)³. (-7)³


c) [(-7) . (+4)]² = (-7)² . (+4)²
d) [(+3) . (+5)]² = (+3)² . (+5)²
e) [(-4)² . (+6)]³ = (-4)⁶ . (+6)³
f) [(+5)⁴ . (-2)³]² = (-4)⁸ . (+6)⁶

RAIZ QUADRADA EXATA DE NÚMEROS INTEIROS

Vamos recordar: √49 = 7, porque 7² = 49 No conjunto dos números inteiros, a raiz quadrada de 49 pode ser: +7, poque (+7)² = 49. -7, porque (-7)² = 49. Como o resultado de uma operação, deve ser único, vamos adotar o seguinte critério: Exemplos: a) +√16 = +4 b) - √16 = -4 c) √9 = 3 d) -√9 = -3 Os números negativos não têm raiz quadrada no conjunto Z Veja: a) √-9 = nenhum inteiro, pois (nenhum inteiro)² = -9 b) √-16 = nenhum inteiro, pois (nenhum inteiro)² = -16 EXERCÍCIOS 1) Determine as raízes:

a) √4 = 2


b) √25 = 5
c) √0 = 0
d) -√25 = -5
e) √81 = 9
f) -√81 = -9
g) √36 = 6
h) -√1 = -1
i) √400 = 20
j) -√121 = -11
k) √169 = 13
l) -√900 = -30 2) Calcule caso exista em Z:

a) √4 = 2


b) √-4 = não existe
c) -√4 = -2d) √64 = 8e) √-64 = não existe
f) -√64 = -8
g) -√100 = -10
h) √-100 = não existe 3) Calcule:

a) √25 + √16 = 9


b) √9 - √49 = -4
c) √1 + √0 = 1
d) √100 - √81 + √4 = 3
e) -√36 + √121 + √9 = 8
f) √144 + √169 -√81 = 16

EXEPRESSÕES NÚMERICAS

As expressões devem ser resolvidas obedecendo à seguinte ordem de operações: 1) Potenciação e radiciação; 2) Multiplicação e divisão 3) Adição e subtração Nessas operações são realizados : 1) parênteses ( ) 2) colchetes [ ] 3) chaves { } exemplos: calcular o valor das expressões : 1°) exemplo (-3)² - 4 - (-1) + 5² 9 – 4 + 1 + 25 5 + 1 + 25 6 + 25 31 2°) exemplo 15 + (-4) . (+3) -10 15 – 12 – 10 3 – 10 -7 3°) exemplo 5² + √9 – [(+20) : (-4) + 3] 25 + 3 – [ (-5) +3 ] 25 + 3 - [ -2] 25 +3 +2 28 + 2 30 EXERCÍCIOS 1) Calcule o valor das expressões:

a) 5 + ( -3)² + 1 = 15


b) 10 + (-2)³ -4 = -2
c) 12 – 1 + (-4)² = 27
d) (-1)⁵ + 3 – 9 = -7
e) 18 – (+7) + 3² = 20
f) 6 + (-1)⁵ - 2 = 3
g) (-2)³ - 7 – (-1) = -14
h) (-5)³ - 1 + (-1)⁹ = -127
i) 5⁰ - ( -10) + 2³ = 19
j) (-2)³ + (-3)² - 25 = -24 2) Calcule o valor das expressões:

a) 3 - 4² + 1 = -12


b) 2³ - 2² - 2 = 2
c) (-1)⁴ + 5 - 3² = -3
d) 5⁰ - 5¹ - 5⁰ = -5
e) (-3)². (+5) + 2 = 47
f) (-1)⁷ - (-1)⁸ = -2
g) 5 + (-3)² + 7⁰ = 15
h) √49 + 2³ - 1 = 14 3) Calcule o valor das expressões:

a) (-3)² + 5 = 14


b) (-8)² - (-9)² = -17
c) -72⁰ + (-1)⁸ = 0d) (-12)⁰ + (+12)⁰ = 2
e) 10³ - (-10)² - 10⁰ = 899
f) (-7)² + (-6)² - (-1)² = 84
g) (-1)⁶ + (+1)⁵ + (-1)⁴ + (+1)³ = 4
h) 2⁶ - 2⁵ - 2⁴ - 2³ - 2² - 2 = 2 4) Calcule o valor das expressões:

a) (-3) . (+7) + (-8) . (-3) = 3


b) (-3)³ + (+2)² - 7 = -30
c) 8 + (-3 -1)² = 24
d) (-2 + 6)³ : (+3 – 5)² = 16
e) –(-5)² + (-7 + 4) = -28
f) (-2)⁶ + (+5) . (-2) = 54 5) Calcule o valor das expressões:

a) (-3)³ . (-2)² + (3) + 5⁰ = -110


b) (-1)³ + 3 + (+2) . (+5) = 12
c) (-2) . (-7) + (-3)² = 23
d) 2 . (-5)² - 3 . (-1)³ + 4 = 57 e) –[ -1 + (-3) . (-2)]²

f) –(5 – 7)³ - [ 5 - 2² - (4 – 6)] = 5


g) (-3 + 2 – 1)³ - ( -3 + 5 – 1)⁸ + 3 = -6 h) 8 – [ -7 + )-1) . (-6) + 4]²

i) 14 – [(-1)³ . (-2)² + (-35) : (+5)] = 25


j) 5³ - [ 10 + (7 -8)² ]² - 4 + 2³ = 8
k) (-1)⁸ + 6⁰ - [15 + (-40) : (-2)³ ] = -18
l) -3 –{ -2 – [(-35) : (+5) + 2² ]} = -4 6) Calcule o valor das expressões:

a) (- 3 + 5 + 2) : (-2) = -2


b) (+3 – 1)² - 15 = -11
c) (-2)³ - (-1 + 2)⁵ = -9
d) 40 : (-1)⁹ + (-2)³ - 12 = -60 e) 10 – [5 – (-2) + (-1)] = 4

f) 2 – { 3 + [ 4 – (1 – 2) + 3 ] – 4} = -5


g) 15 – [ (-5)² - (10 - 2³ ) ] = -8
h) 13 – [(-2) – (-7) + (+3)² ] = -1
i) 7² - [ 6 – (-1)⁵ - 2²] = 46
j) 2³ - [(-16) : (+2) – (-1)⁵] = 15
k) 50 : { -5 + [ -1 –(-2)⁵ : (-2)³ ]} = -5 7) Calcule o valor das expressões:

a) 10 + (-3)² = 19


b) (-4)² - 3 = 13
c) 1 + (-2)³ = -7
d) -2 + (-5)² = 23
e) (-2)² + (-3)³ = -23
f) 15 + (-1)⁵ - 2 = 12g) (-9)² -2 – (-3) = 82
h) 5 + (-2)³ + 6 = 3 8) Calcule o valor das expressões:

a) 5 – { +3 – [(+2)² -(-5)² + 6 – 4 ]} = -17


b) 15 – { -3 + [(5 – 6)² . (9 -8 ) ² + 1]} = 16
c) 18 – { 6 – [ -3 – (5 – 4) – (7- 9)³ ] – 1 } = 17
d) -2 + { -5 –[ -2 – (-2)³ - 3- (3 -2 )⁹ ] + 5 } = -4
e) 4 – {(-2)² . (-3) – [ -11 + (-3) . (-4)] – (-1)} = 16 Exercícios em forma de teste: 1) O resultado de (-1001)² é: a) 11 011 b) -11 011

c) 1 002 001 X

d) -1 002 001 2) O valor da expressão 2⁰ - 2¹ - 2² é: a) -4

b) -5 x

c) 8 d) 0 3) O valor da expressão (-10)² - 10² é:

a) 0 x

b) 40 c) -20 d) -40 4) O valor da expressão √16 - √4 é

a) 2 x

b) 4 c) 6 d) 12 5) O valor da expressão 10 + √9 – 1 é: a) 14 b) 18

c) 12 x

d) 20 6) O valor da expressão (-4)⁴ - (-4) é : a) 20 b) -20 c) 252

d) 260 x

7) O valor da expressão (-2)⁴ + (-9)⁰ - (-3)² é :

a) 8 x

b) 12 c) 16 d) -26 8) O valor da expressão (-7)² + (+3) . (-4) – (-5) é : a) 7 b) 37

c) 42 x

d) 47 9) A expressão (-7)¹⁰ : (-7)⁵ é igual a:

a) (-7)⁵ x

b) (-7)² c) (-7)¹⁵ d) (-1)² 10) O valor da expressão –[-2 + (-1) . (-3)]² é :

a) -1 x

b) -4 c) 1 d) 4 11) O valor da expressão numérica -4² + (3 -5) . (-2)³ + 3² - (-2)⁴ é a) 7 b) 8 c) 15

d) -7 x