Exercicio de potenciação e raiz quadrada de monomios

Professor de Matemática e Ciências Antonio Carlos Carneiro Barroso

Colégio Estadual Dinah Gonçalves

email

Blog HTTP://ensinodematemtica.blogspot.com.br 
http://accbarrosogestar.blogspot.com.br 

extraído do http://jmpgeo.blogspot.com


OPERAÇÕES COM MONÔMIOS
Adição e subtração Eliminam-se os parênteses e reduzem-se os termos semelhantes. Exemplos 1 (+8x) + (-5x) 8x – 5x 3x Exemplo 2 (-7x ) – ( +x) -7x – x -8x Exemplo 3 (2/3x) – (-1/2x) 2/3x + 1/2x 4x/6 + 3x/6 7x/6 EXERCÍCIOS 1) Efetue:

a) (+7x) + (-3x) = (R: 4x)


b) (-8x) + (+11x) = (R: 3x )c) (-2y) + (-3y) = (R: -5y)
d) (-2m) + (-m) = (R: -3m)
e) (+5a²) + (-3a²) = (R: 2a²)
f) (+5x) + (-5x) = (R: 0)
g) (+6x) + (-4x) = (R: 2x)
h) (-6n) + (+n) = (R: -4n)
i) (+8x) – ( -3x) = (R: 11x)
j) (-5x) – (-11x) = (R: 6x)
k) (-6y) – (-y) = (R: -5y)
l) (+7y) – (+7y) = (R: 0 )m) (-3x) – (+4x) = (R -7x)
n) (-6x) – ( -x) = (R: -5x)
o) (+2y) – (+5y) = (R: -3y )p) (-m) –(-m) = (R: 0 ) 2) Efetue :

a) (+ 3xy) – (-xy) + (xy) = (R: 5xy)


b) (+ 15x) – (-3x) – (+7x) + (-2x) = (R: 9x )c) (-9y) –( +3y) – (+y) + (-2y) = (R: -15y)
d) (3n) + (-8n) + (+4n) – (-5n) – (-n) = (R: 5n) 3) Efetue:

a) (+1/2x) + (-1/3x) = (R: 1x/6)


b) ( -2/5x) + (-2/3x) = (R: -16x/15)
c) (-7/2y) + (+1/4y) = (R: -13y/4)
d) (+2m) +( -3/4m) = (R: 5m/4)
e) (+2/3x) - ( -3/2x) = (R: 13x/6)
f) (-3/4y) – (+1/2y) = (R: -5y/4)
g) (+2/5m) – (+2/3m) = (-4m/15)
h) (-3x) –(-2/5x) = (R: 13x/5)

MULTIPLICAÇÃO

Vamos Calcular: (3x²) . (2x⁵) = ( 3 . x . x) . ( 2 .x.x.x.x.x.)= 3 .2 x.x.x.x.x.x.x = 6x⁷ Conclusão: multiplicam-se os coeficientes e as partes literais Exemplos a) (3x⁴) . (-5x³) = -15x⁷ b) (-4x) . (+3x) = -12x² c) (-2y⁵) . (-7y ) = 14y⁶ d) (3x) . ( 2y) = 6xy EXERCÍCIOS 1) Calcule:

a) (+5x) . (-4x²) = (R: -20x³)


b) (-2x) . (+3x) = (R: -6x²)c) (+5x) . (+4x) = (R: 20x²)
d) (-n) . (+ 6n) = (R: -6n²)e) (-6x) . (+3x²) = (R: -18x³)
f) (-2y) . (5y) = (R: -10y²)
g) (+4x²) . (+5x³) = (R: 20x⁵)
h) (2y) . (-7x) = (R: -14yx)
i) (-2x) . (-3y) = (R: 6xy)
j) (+3x) . (-5y) = (R: -15xy)
k) (-3xy) . (-2x) = (R: 6x²y) 2) Calcule

a) (2xb) . (4x) = (R: 8x²b)


b) (-5x²) . (+5xy²) = ( R: -25 x³y²)c) (-5) . (+15x²y) = (R: -75 x²y)
d) (-9X²Y) . (-5XY²) = (R: 45x³y³)e) (+3X²Y) . (-XY) = ( R: -3x³y²) f) (X²Y³) . (5X³Y²) =

g) (-3x) . (+2xy) . ( -x³) = (R: 6x⁵y)h) (-x³) . (5yx²) . (2y³) =

i) (-xy) . (-xy) . (-xy) = j) (-xm) . ( x²m) . (3m) = 3) Calcule: a) (1/2x) . (3/5x³) = b) (-2/3x) . (+3/4y) = c) (-1/3x²) . (4/3x³) = d) (-x²/3) . (-x/2) = e) (-2x/3) . (6x/5) = f) (-10xy) . ( xy²/3) =

DIVISÃO

Vamos calcula: (15x⁶) : (5x²) = 15 . x . x . x. x. x. x : 3 . x . x 3 . x . x . x . x 3x⁴ Conclusão: dividem-se os coeficientes e as partes literais Exemplos a) (21x⁶) : (-7x⁴) = -3x² b) (-10x³) : (-2x²) = +5x c) (-15x³y) : ( -5xy) = +3x² EXERCÍCIOS 1) Calcule os quocientes: a) (15x⁶) : (3x²) = b) (16x⁴) : (8x) = c) (-30x⁵) : (+3x³) = d) (+8x⁶) : (-2x⁴) = e) (-10y⁵) : (-2y) = f) (-35x⁷) : ( +5x³) = g) (+15x⁸) : (-3x²) = h) (-8x) : (-8x) = i) (-14x³) : (+2x²) = j) (-10x³y) : (+5x²) = k) (+6x²y) : (-2xy) = l) (-7abc) : (-ab) = m) (15x⁷) : ( 6x⁵) = n) (20a³b²) : ( 15ab²) = o) (+1/3x³) : (-1/5x²) = p) (-4/5x⁵y) : ( -4/3x³y) =

q) (-2xy²) : ( xy/4) = (R: -8y)

POTENCIAÇÃO

Vamos calcular: (5a³m)² = 25 a⁶m Conclusão : Para elevarmos um monômio a uma potência, elevamos cada um de seus fatores a essa potência. Exemplos 1) (-7x)² = 49 x² 2) (-3x²y)³ = -27x⁶y³ 3) (- 1/4x⁴)² = 1/16x⁸ EXERCÍCIOS 1) Calcule: a) ( + 3x²)² = b) (-8x⁴)² = c) (2x⁵)³ = d) (3y²)³ = e) (-y²)⁴ = f) (-mn)⁴ = g) (2xy²)⁴ = h) (-4x²b)² = i) (-3y²)³ = j) (-6m³)² = k) (-3x³y⁴)⁴ = l) (-2x²m³)³ = 2) Calcule: a) (x²/2)³ = b) (-x²/4)² = c) (-1/2y)² = d) (+2/3x)³ = e) (-3/4m)² = f) (-5/6m³)² = RAIZ QUADRADA Aplicando a definição de raiz quadrada, temos: a) √49x² = 7x, pois (7x)² = 49x² b) √25x⁶ = 5x³, pois (5x³)² = 25x⁶ Conclusão: para extrair a raiz quadrada de um monômio, extraímos a raiz quadrada do coeficiente e dividimos o expoente de cada variável por 2 Exemplos: a) √16x⁶ = 4x³ b) √64x⁴b² = 8x²b Obs: Estamos admitindo que os resultados obtidos não assumam valores numéricos negativos EXERCÍCIOS 1) Calcule a) √4x⁶ = b) √x²y⁴ = c) √36c⁴ = d) √81m² = e) √25x¹² = f) √49m¹⁰ = g) √9xb² = h) √9x²y² = i) √16x⁸ = 2) Calcule: a) √x²/49 = b) √x²/25 = c) √4/9x⁸ = d) √49/64x¹⁰ = e) √25/81yx⁶ =

f) √121/100 x²m⁸ =

Professor de Matemática e Ciências Antonio Carlos Carneiro Barroso

Colégio Estadual Dinah Gonçalves

email

Blog HTTP://ensinodematemtica.blogspot.com

extraído do /jmpmat13.blogspot.com

POTENCIAÇÃO A potenciação é uma multiplicação de fatores iguais Exemplos 2³ = 2 .2 .2 = 8 Você sabe também que: 2 é a base 3 é o expoente 8 é a potência ou resultado 1) O expoente é par a) (+7)² = (+7) . (+7) = +49 b) (-7)² = (-7) . (-7) = +49 c) (+2)⁴ = (+2) . (+2) . (+2) . (+2) = + 16 d) (-2)⁴ = (-2) . (-2) . (-2) . (-2) = + 16 Conclusão : Quando o expoente for par, a potencia é um número positivo 2) Quando o expoente for impar a) (+4)³ = (+4) . (+4) . (+4) = + 64 b) (-4)³ = (-4) . (-4) . (-4) = - 64 c) (+2)⁵ = (+2) . (+2) . (+2) . (+2) . (+2) = +32 d) (-2)⁵ = (-2) . (-2) . (-2) . (-2) . (-2) = -32 Conclusão : Quando o expoente é impar, a potência tem o mesmo sinal da base. EXERCÍCIOS 1) Calcule as potências ;

a) (+7)²= (+49)


b) (+4)² = (+16)
c) (+3)² = (+9)
d) (+5)³ = (+125)
e) (+2)³ = (+8)
f) (+3)³ = (+27)
g) (+2)⁴ = (+16)
h) (+2)⁵ = +32
i) (-5)² = +25
j) (-3)² = +9
k) (-2)³ = -8
l) (-5)³ = -125
m) (-1)³ = -1
n) (-2)⁴ = +16
o) (-3)³ = -27
p) (-3)⁴ = +81 2) Calcule as potencias:

a) (-6)² = +36


b) (+3)⁴ = +81
c) (-6)³ = -216
d) (-10)² = +100
e) (+10)² = +100
f) (-3)⁵ = -243
g) (-1)⁶ = +1h) (-1)³ = -1
i) (+2)⁶ = +64
j) (-4)² = +16
k) (-9)² = +81
l) (-1)⁵⁴ = +1
m) (-1)¹³ = -1
n) (-4)³ = -64
o) (-8)² = +64
p) (-7)² = +49 3) Calcule as potencias

a) 0⁷ = 0


b) (-2)⁸ = 256
c) (-3)⁵ = -243
d) (-11)³ = -1331
e) (-21)² = 441
f) (+11)³ = +1331
g) (-20)³ = -8000
h) (+50)² = 2500 4) Calcule o valor das expressões (primeiro as potências)

a) 15 + (+5)² = 40


b) 32 – (+7)² = -17
c) 18 + (-5)² = 43
d) (-8)² + 14 = 78
e) (-7)² - 60 = -11f) 40 – (-2)³ = 48
g) (-2)⁵ + 21 = -11
h) (-3)³ - 13 = -40
i) (-4)² + (-2)⁴ = 32
j) (-3)² + (-2)³ =1
k) (-1)⁶ + (-3)³ = -26
l) (-2)³ + (-1)⁵ = -9

CONVEÇÕES:

Todo o número inteiro elevado a 1 é igual a ele mesmo. Exemplos: a) (+7)¹ = +7 b) (-3)¹ = -3 Todo o número inteiro elevado a zero é igual a 1. Exemplos: a) (+5)⁰ = 1 b) (-8)⁰= 1 IMPORTANTE! Observe como a colocação dos parênteses é importante: a) (-3)² = (-3) . (-3) = +9 b) -3² = -(3 . 3) = -9 Para que a base seja negativa, ela deve estar entre parênteses. EXERCÍCIOS 1) Calcule as potências:

a) (+6)¹ = +6


b) (-2)¹ = -2c) (+10)¹ = +10
d) (-4)⁰ = +1e) (+7)⁰ = +1
f) (-10)⁰ = +1
g) (-1)⁰ = +1
h) (+1)⁰ = +1
i) (-1)⁴²³ = -1j) (-50)¹ = -50
k) (-100)⁰ = +1
l) 20000⁰ = +1 2) Calcule:

a) (-2)⁶ = 64


b) -2⁶ = -64 Os resultados são iguais ou diferentes? R: Deferentes 3) Calcule as potências:

a) (-5)² = 25


b) -5² = -25
c) (-7)² = +49
d) -7² = -49
e) (-1)⁴ = +1
f) -1⁴ = -1 4) Calcule o valor das expressões (primeiro as potências):

a) 35 + 5²= 60b) 50 - 4² = -14


c) -18 + 10² = 82
d) -6² + 20 = -16
e) -12-1⁷ = -13
f) -2⁵ - 40 = -72
g) 2⁵ + 0 - 2⁴ = 16
h) 2⁴ - 2² - 2⁰ = 11
i) -3² + 1 - .65⁰ = -9
j) 4² - 5 + 0 + 7² = 60
k) 10 - 7² - 1 + 2³ = -32
l) 3⁴ - 3³ + 3² - 3¹ + 3⁰ = 61

PROPRIEDADES

1) Produto de potência de mesma base: conserva-se a base e somam-se os expoentes.

Observe: a³ . a² = ( a .a .a ) . ( a .a ) = a⁵ Note que: a³ . a² = a³ ⁺ ² = a⁵ Exemplos a) (-5)⁷ . (-5)² = (-5) ⁷ ⁺ ² = (-5)⁹ b) (+2)³ . (+2)⁴ = (+2)³ ⁺ ⁴ = (+2)⁷ EXERCÍCIOS 1) Reduza a uma só potência:

a) 5⁶ . 5² = 5⁹


b) x⁷. x⁸= x¹⁵a) 2⁴ . 2 . 2⁹ = 2¹⁴
b) x⁵ .x³ . x = x⁹
c) m⁷ . m⁰ . m⁵ = m¹²
d) a . a² . a = a⁴ 1) Reduza a uma só potencia:

a) (+5)⁷ . (+5)² = (+5)⁹


b) (+6)² . (+6)³ = (+6)⁵
c) (-3)⁵ . (-3)² = (-3)⁷
d) (-4)² . (-4) = (-4)³
e) (+7) . (+7)⁴ = (+7)⁵
f) (-8) . (-8) . (-8) = (-8)³
g) (-5)³ . (-5) . (-5)² = (-5)⁶
h) (+3) . (+3) . (+3)⁷ = (+3)⁹
i) (-6)² . (-6) . (-6)² = (-6)⁵
j) (+9)³ . (+9) . (+9)⁴ = (+9)⁸

2) Divisão de potências de mesma base:

Observe: a⁵ : a² = (a . a . a . a .a ) : (a .a ) = a³ Note que: a⁵ : a² = a⁵⁻² = a³ Exemplos: a) (-5)⁸ : (-5)⁶ = (-5)⁸⁻⁶ = (-5)² b) (+7)⁹ : (+7)⁶ = (+7)⁹⁻⁶ = (+7)³ EXERCÍCIOS 1) Reduza a um asó potência:

a) a⁷ : a³ = a⁴


b) c⁸ : c² = c⁶
c) m³ : m =
d) x⁵ : x⁰ = x⁵
e) y²⁵ : y²⁵ = y⁰= 1f) a¹⁰² : a = a¹⁰¹ 2) Reduza a uma só potência:

a) (-3)⁷ : (-3)² = (-3)⁵


b) (+4)¹⁰ : (+4)³ = (+4)⁷
c) (-5)⁶ : (-5)² = (-5)⁴
d) (+3)⁹ : (+3) = (+3)⁸
e) (-2)⁸ : (-2)⁵ = (-2)³
f) (-3)⁷ : (-3) = (-3)⁶
g) (-9)⁴ : (-9) = (-9)³
h) (-4)² : (-4)² = (-4)⁰ = 1 3) Calcule os quocientes:

a) (-5)⁶ : (-5)⁴ = (R: 25)


b) (-3)⁵ : (-3)² = (R: -27 )
c) (-4)⁸ : (-4)⁵= (R: -64)
d) (-1)⁹ : (-1)² = (R: -1)
e) (-7)⁸ : (-7)⁶= (R: 49)
f) (+10)⁶ : (+10)³ = (R: 1000)

3) Potência de Potência:

Obeserve: (a²)³ = a²˙³ = a⁶ Exemplo: [(-2)³]⁴ = (-2)³˙⁴ = (-2)¹² EXERCÍCIOS 1) Aplique a propriedade de potência de potência.

a) [(-4)² ]³ = (-4)⁶


b) [(+5)³ ]⁴ = (+5)¹²
c) [(-3)³ ]² = (-3)⁶
d) [(-7)³ ]³ = (-7)⁹e) [(+2)⁴ ]⁵ = (+2)²⁰
f) [(-7)⁵ ]³ = (-7)¹⁵
g) [(-1)² ]² = (-1)⁴
h) [(+2)³ ]³ = (+2)⁹
i) [(-5)⁰ ]³ = (-5)⁰ = 1 2) Calcule o valor de:

a) [(+3)³]² = 729


b) [(+5)¹]⁵ = -243
c) [(-1)⁶]² = 1
d) [(-1)³]⁷ = -1e) [(-2)²]³ = 64
f) [(+10)²]² = 10000

4) Potência de um produto.

Obeserve: ( a . b )³ = ( a . b ) . (a . b ) . ( a . b ) = ( a . a . a ) . ( b . b . b ) = a³ . b³ Exemplos: [(-2) . (+5) ] = (-2)³ . (+5)³ EXERCÍCIOS 1) Aplique a propriedade de potência de um produto:

a) [(-2) . (+3)]⁵ = (-2)⁵ . (+3)⁵b) [(+5) . (-7)]³ = (+5)³. (-7)³


c) [(-7) . (+4)]² = (-7)² . (+4)²
d) [(+3) . (+5)]² = (+3)² . (+5)²
e) [(-4)² . (+6)]³ = (-4)⁶ . (+6)³
f) [(+5)⁴ . (-2)³]² = (-4)⁸ . (+6)⁶

RAIZ QUADRADA EXATA DE NÚMEROS INTEIROS

Vamos recordar: √49 = 7, porque 7² = 49 No conjunto dos números inteiros, a raiz quadrada de 49 pode ser: +7, poque (+7)² = 49. -7, porque (-7)² = 49. Como o resultado de uma operação, deve ser único, vamos adotar o seguinte critério: Exemplos: a) +√16 = +4 b) - √16 = -4 c) √9 = 3 d) -√9 = -3 Os números negativos não têm raiz quadrada no conjunto Z Veja: a) √-9 = nenhum inteiro, pois (nenhum inteiro)² = -9 b) √-16 = nenhum inteiro, pois (nenhum inteiro)² = -16 EXERCÍCIOS 1) Determine as raízes:

a) √4 = 2


b) √25 = 5
c) √0 = 0
d) -√25 = -5
e) √81 = 9
f) -√81 = -9
g) √36 = 6
h) -√1 = -1
i) √400 = 20
j) -√121 = -11
k) √169 = 13
l) -√900 = -30 2) Calcule caso exista em Z:

a) √4 = 2


b) √-4 = não existe
c) -√4 = -2d) √64 = 8e) √-64 = não existe
f) -√64 = -8
g) -√100 = -10
h) √-100 = não existe 3) Calcule:

a) √25 + √16 = 9


b) √9 - √49 = -4
c) √1 + √0 = 1
d) √100 - √81 + √4 = 3
e) -√36 + √121 + √9 = 8
f) √144 + √169 -√81 = 16

EXEPRESSÕES NÚMERICAS

As expressões devem ser resolvidas obedecendo à seguinte ordem de operações: 1) Potenciação e radiciação; 2) Multiplicação e divisão 3) Adição e subtração Nessas operações são realizados : 1) parênteses ( ) 2) colchetes [ ] 3) chaves { } exemplos: calcular o valor das expressões : 1°) exemplo (-3)² - 4 - (-1) + 5² 9 – 4 + 1 + 25 5 + 1 + 25 6 + 25 31 2°) exemplo 15 + (-4) . (+3) -10 15 – 12 – 10 3 – 10 -7 3°) exemplo 5² + √9 – [(+20) : (-4) + 3] 25 + 3 – [ (-5) +3 ] 25 + 3 - [ -2] 25 +3 +2 28 + 2 30 EXERCÍCIOS 1) Calcule o valor das expressões:

a) 5 + ( -3)² + 1 = 15


b) 10 + (-2)³ -4 = -2
c) 12 – 1 + (-4)² = 27
d) (-1)⁵ + 3 – 9 = -7
e) 18 – (+7) + 3² = 20
f) 6 + (-1)⁵ - 2 = 3
g) (-2)³ - 7 – (-1) = -14
h) (-5)³ - 1 + (-1)⁹ = -127
i) 5⁰ - ( -10) + 2³ = 19
j) (-2)³ + (-3)² - 25 = -24 2) Calcule o valor das expressões:

a) 3 - 4² + 1 = -12


b) 2³ - 2² - 2 = 2
c) (-1)⁴ + 5 - 3² = -3
d) 5⁰ - 5¹ - 5⁰ = -5
e) (-3)². (+5) + 2 = 47
f) (-1)⁷ - (-1)⁸ = -2
g) 5 + (-3)² + 7⁰ = 15
h) √49 + 2³ - 1 = 14 3) Calcule o valor das expressões:

a) (-3)² + 5 = 14


b) (-8)² - (-9)² = -17
c) -72⁰ + (-1)⁸ = 0d) (-12)⁰ + (+12)⁰ = 2
e) 10³ - (-10)² - 10⁰ = 899
f) (-7)² + (-6)² - (-1)² = 84
g) (-1)⁶ + (+1)⁵ + (-1)⁴ + (+1)³ = 4
h) 2⁶ - 2⁵ - 2⁴ - 2³ - 2² - 2 = 2 4) Calcule o valor das expressões:

a) (-3) . (+7) + (-8) . (-3) = 3


b) (-3)³ + (+2)² - 7 = -30
c) 8 + (-3 -1)² = 24
d) (-2 + 6)³ : (+3 – 5)² = 16
e) –(-5)² + (-7 + 4) = -28
f) (-2)⁶ + (+5) . (-2) = 54 5) Calcule o valor das expressões:

a) (-3)³ . (-2)² + (3) + 5⁰ = -110


b) (-1)³ + 3 + (+2) . (+5) = 12
c) (-2) . (-7) + (-3)² = 23
d) 2 . (-5)² - 3 . (-1)³ + 4 = 57 e) –[ -1 + (-3) . (-2)]²

f) –(5 – 7)³ - [ 5 - 2² - (4 – 6)] = 5


g) (-3 + 2 – 1)³ - ( -3 + 5 – 1)⁸ + 3 = -6 h) 8 – [ -7 + )-1) . (-6) + 4]²

i) 14 – [(-1)³ . (-2)² + (-35) : (+5)] = 25


j) 5³ - [ 10 + (7 -8)² ]² - 4 + 2³ = 8
k) (-1)⁸ + 6⁰ - [15 + (-40) : (-2)³ ] = -18
l) -3 –{ -2 – [(-35) : (+5) + 2² ]} = -4 6) Calcule o valor das expressões:

a) (- 3 + 5 + 2) : (-2) = -2


b) (+3 – 1)² - 15 = -11
c) (-2)³ - (-1 + 2)⁵ = -9
d) 40 : (-1)⁹ + (-2)³ - 12 = -60 e) 10 – [5 – (-2) + (-1)] = 4

f) 2 – { 3 + [ 4 – (1 – 2) + 3 ] – 4} = -5


g) 15 – [ (-5)² - (10 - 2³ ) ] = -8
h) 13 – [(-2) – (-7) + (+3)² ] = -1
i) 7² - [ 6 – (-1)⁵ - 2²] = 46
j) 2³ - [(-16) : (+2) – (-1)⁵] = 15
k) 50 : { -5 + [ -1 –(-2)⁵ : (-2)³ ]} = -5 7) Calcule o valor das expressões:

a) 10 + (-3)² = 19


b) (-4)² - 3 = 13
c) 1 + (-2)³ = -7
d) -2 + (-5)² = 23
e) (-2)² + (-3)³ = -23
f) 15 + (-1)⁵ - 2 = 12g) (-9)² -2 – (-3) = 82
h) 5 + (-2)³ + 6 = 3 8) Calcule o valor das expressões:

a) 5 – { +3 – [(+2)² -(-5)² + 6 – 4 ]} = -17


b) 15 – { -3 + [(5 – 6)² . (9 -8 ) ² + 1]} = 16
c) 18 – { 6 – [ -3 – (5 – 4) – (7- 9)³ ] – 1 } = 17
d) -2 + { -5 –[ -2 – (-2)³ - 3- (3 -2 )⁹ ] + 5 } = -4
e) 4 – {(-2)² . (-3) – [ -11 + (-3) . (-4)] – (-1)} = 16 Exercícios em forma de teste: 1) O resultado de (-1001)² é: a) 11 011 b) -11 011

c) 1 002 001 X

d) -1 002 001 2) O valor da expressão 2⁰ - 2¹ - 2² é: a) -4

b) -5 x

c) 8 d) 0 3) O valor da expressão (-10)² - 10² é:

a) 0 x

b) 40 c) -20 d) -40 4) O valor da expressão √16 - √4 é

a) 2 x

b) 4 c) 6 d) 12 5) O valor da expressão 10 + √9 – 1 é: a) 14 b) 18

c) 12 x

d) 20 6) O valor da expressão (-4)⁴ - (-4) é : a) 20 b) -20 c) 252

d) 260 x

7) O valor da expressão (-2)⁴ + (-9)⁰ - (-3)² é :

a) 8 x

b) 12 c) 16 d) -26 8) O valor da expressão (-7)² + (+3) . (-4) – (-5) é : a) 7 b) 37

c) 42 x

d) 47 9) A expressão (-7)¹⁰ : (-7)⁵ é igual a:

a) (-7)⁵ x

b) (-7)² c) (-7)¹⁵ d) (-1)² 10) O valor da expressão –[-2 + (-1) . (-3)]² é :

a) -1 x

b) -4 c) 1 d) 4 11) O valor da expressão numérica -4² + (3 -5) . (-2)³ + 3² - (-2)⁴ é a) 7 b) 8 c) 15

d) -7 x